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Econometrics

Intermediate level notes



这是一份期末不完全总结笔记。

南开大学经济学院硕士生的中级计量经济学，主要使用的是林文夫（Hayashi）一书，这本书
已经达到了高级计量的难度，在一些学校被用作三高教材。这本书的权威性勿庸置疑，好就好

在建立了统一的GMM分析框架，但由于成书较早，我认为存在如下问题：

一是符号与现代计量教材不匹配，例如解释变量和工具变量的表示相反、前定变量的定义、各

章节系数的表示、渐近方差的夹心三明治形式……
二是缺少完整严谨的证明，通常只给出证明的思路——这也是这份笔记尝试补充的；
三是缺少图形化解释。本笔记补充了投影矩阵的图形分解，Wald、LR、LM统计量三者的图象
理解等。

这就造成了课程讲义同样存在上述问题，同时讲义存在严重的跳步（虽然这部分会由老师上课

板书给出），但光看讲义就会云里雾里、不知所以然，回到书上一看又会豁然开朗，这种现象

在使用Verbeek一书内容时尤为明显。

在学习中级计量的过程中，我主要参考了如下书籍：

对于初学者，我推荐第一本书作为前置阅读学习材料，这本书语言幽默风趣配有漫画，聚焦线

性回归（含渐近理论）与极大似然。我在小红书上指出了中文版前两章的翻译错误，但由于未

能找到完整的英文原版，对于整本书的纠错暂且搁置。

陈强老师在他书的前言部分写到“其中尤以Hayashi(2000)对本书的影响最深”，陈书修改了解释变量

与工具变量的写法，大体遵循林文夫的思路，对于命题的证明更加完整，我参考较多有很大启

发。

洪永淼老师的书最新英文版有部分更新，但中文版已经足够，强烈推荐洪教主的高计网课，B
站上有三个版本，这三个版本互为补充，可以根据学习内容与自身英文水平选择观看：

【厦门大学】高级计量经济学（洪永淼）_哔哩哔哩_bilibili
高级计量经济学（洪永淼：英文字幕2020版）_哔哩哔哩_bilibili
高级计量经济学II-洪永淼_哔哩哔哩_bilibili

有学长评价（知乎@梅林的胡子i）：

(荷)扬·R.麦纳斯著.计量经济学理论导论.格致出版社.2025
陈强编著.高级计量经济学及Stata应用.第2版.高等教育出版社.2014
洪永淼著.高级计量经济学.高等教育出版社.2011
(美) 哈尔伯特·怀特著.计量经济学渐近理论.格致出版社.2023
威廉·H·格林著.计量经济分析.中国人民大学出版社.2020

https://www.bilibili.com/video/BV1pW41117rs/?spm_id_from=333.337.search-card.all.click
https://www.bilibili.com/video/BV1LU4y1h7Nb/?spm_id_from=333.337.search-card.all.click
https://www.bilibili.com/video/BV1xd4y1G7ag/?spm_id_from=333.337.search-card.all.click


推荐这本书倒不是他写得有多好，而是它的配套网课就能在b站找到，并且这可能是
你能在全网找到的讲得最好的计量经济学网课。

幸好后来b站刷到了洪永淼老师的高级计量课程，听了之后简直是开了我的天眼了，
洪教主讲课是真的细致，一步一步地给你推导每一个定理，证明该有的步骤是一个都

不舍得跳过，一些重要的概念还会强调很多遍，非常适合我这种基础差的，我觉得只

要上过概率论与数理统计，哪怕是本科生，学洪永淼的网课也没有一点问题。

如果看findingnothing的视频需要用到的书目为Greene的《Econometrics Analysis》和
Hansen的《Econometrics》：findingnothing的个人空间-合集·计量经济学-哔哩哔哩视频

本系列笔记构成如下：第一章基于洪书第三章，基础内容完全够用；第二章忽略了4种不同的
收敛形式与大数定律与中心极限定理的具体内容，因为在之后的证明中可以直接使用；第三章

忽略了对极大似然估计原理的理解解释以及不考的LM检验；第四章由于2SLS的证明被纳入第
五章GMM，不在考试重点所以较为简略，这部分的详细内容同样可以参考洪书第七章；第五
章根据考试要求对不同Propositions有所选取。最后三章多方程GMM、受限因变量模型、面
板GMM主要按照考点进行梳理，并根据教材进行了必要的补充。

随笔记附上一套金融学院中级计量经济学 Intermediate Econometrics | (Albert) Bo ZHAO
赵博期末试题，虽然题型不同，但对于加深各部分理解大有裨益。

感谢王子铭通读本笔记帮助修改细节错误，感谢王昊阳分享对计量精彩深入的理解。

本笔记已尽可能统一符号，并更正了一些讲义上的错误，但错误总是在所难免的，还望多多海

涵指正，也欢迎与我联系交流。

我的个人网站：xishanyu2.github.io，笔记如有更正将会在上面更新。我的邮箱：
zzynankai@outlook.com

西山yu
2025年12月29日

https://space.bilibili.com/8903914/lists/1048826?type=season
https://abzhaobo.github.io/courses/econometrics/
https://abzhaobo.github.io/courses/econometrics/
https://xishanyu2.github.io/
mailto:zzynankai@outlook.com


This is a note from Yongmiao Hong's book, I've changed the subscript t into i, this note
covers the entire content of chap1.

Ass 1: Linearity

Yi = X ′
iβ + εi

Ass 2: Strict Exogeneity

E(εi|Xi) = 0

By the law of iterated expectations(IIE):
E(Xiεi) = 0
E(εi) = 0

then Cov(Xi, εi) = 0

Ass 3: Nonsingularity

Rank(X
′
X) = K ≤ n

Ass 4: Spherical Error Variance

E(ε2
i |X) = σ2

We can write Ass 2 and Ass 4 compactly as follows:

E(ε|X) = 0 and E(εε′|X) = σ2
I

Ass 5: Conditional Normality

ε|X ∼ N(0,σ2
I)

Ass 5 implies both Ass 2 and Ass 4.

The FOC implies that the estimated residual e is orthogonal to regressors X:

Assumptions

OLS Estimator
β̂ = (X

′
X)−1

X
′Y

= (
n

∑
i=1

XiX
′
i)

−1
n

∑
i=1

XiYi

= ( 1

n

n

∑
i=1

XiX
′
i)

−1
1

n

n

∑
i=1

XiYi



X
′e =

n

∑
i=1

Xiei = 0

Sample error:

β̂ − β = (X
′
X)−1

X
′ε

Define an n × n projection matrix:

P = X(X
′
X)−1

X
′

and

M = I − P

Then both matrices P and M are symmetric (i.e., P = P′ and M = M′) and idempotent
(i.e., P2 = P, M2 = M), with

then:

SSR(β̂) = e′e = Y ′MY = ε′Mε

understanding from the projecting perspective:

PX = X,

MX = 0





R2
uc =

Ŷ ′Ŷ

Y ′Y
= 1 −

e′e

Y ′Y

R2 ≡ 1 −
∑n

i=1 e
2
i

∑n
i=1(Yi − Ȳ )2

=
∑n

i=1(Ŷi − Ȳ )2

∑n
i=1(Yi − Ȳ )2

R2 = ρ2

Y Ŷ
, 0 ≤ R2 ≤ 1

If the regression function doesn't contain the intercept, then the R2 may be negative.

s2 = e′e/(n − K) =
1

n − K

n

∑
i=1

e2
i

Ass 5: Conditional Normality

ε|X ∼ N(0,σ2
I)

Normality of the OLS Estimator:

The J × K matrix R is a selection matrix.

Goodness of Fit

Uncentered R2:

Centered R2/Coefficient of Determination:

Consistency and Efficiency of the OLS Estimator
Unbiasedness:
E(β̂|X) = β and E(β̂) = β

Vanishing Variance:
var(β̂|X) = σ2(X

′
X)−1

Orthogonality:
cov(β̂, e|X) = 0
Gauss-Markov Theorem:
var(b̂|X) - var(β̂|X) ~ PSD(positive semi-definite)
Sample Residual Variance Estimator:

Sampling Distribution of the OLS Estimator

(β̂ − β)|X ∼ N [0,σ2(X
′
X)−1]

R(β̂ − β)|X ∼ N [0,σ2R(X
′
X)−1R′]



Residual Variance Estimator:

(n − K)s2

σ2
X

=
e′e

σ2
X

∼ χ2
n−K

we can consider the statistic Rβ̂ − r and check if this difference is significantly
different from zero. Under H0, we have:

Under the alternative to H0: Rβ ≠ r, but we still have β̂ − β → 0. It follows that:

In other words, Rβ̂ − r will converge to a nonzero limit Rβ − r.

Under H0:

(Rβ̂ − r)|X ∼ N(0,σ2R(X
′
X)−1R′)

(1) var[(Rβ̂ − r)|X] = σ2R(X′X)−1R′ is a scalar or a matrix?

(2) Since σ2 is unknown, Rβ̂−r

√σ2R(X′X)−1R′
 is no longer normally distributed.

Reject H0: |T | > Ctn−K, α
2

Variance Estimation for the OLS Estimator∣ ∣Hypothesis Testing
H0 : Rβ = r

Rβ̂ − r = Rβ̂ − Rβ= R(β̂ − β)→ 0 as n → ∞

Rβ̂ − r = R(β̂ − β) + Rβ − r → Rβ − r ≠ 0 as n → ∞

Questions:

Case 1: t-Test: J = 1, replace σ2 by s2

T =
Rβ̂ − r

√s2R(X′X)−1R′

=

Rβ̂−r

√σ2R(X′X)−1R′

√ (n−K)s2

σ2 /(n − K)

∼
N(0, 1)

√χ2
n−K/(n − K)

∼ tn−K

Decision Rule of the t-Test Based on Critical Values:



When we reject a null hypothesis, we often say there is a statistically
significant effect. This does not mean that there is an economic significant effect.
This is because when large samples are used, small and practically unimportant
effects are likely to be statistically significant(since denominator of T which contains s2

is very small when n is infinite).

Lemma Quadratic Form of Normal Random Variables:
If a q × 1 random vector Z ∼ N(0,V ), where V = var(Z) is a nonsingular q × q variance-
covariance matrix, then

Z ′V −1Z ∼ χ2
q

Applying this lemma, and using the result that

(Rβ̂ − r)|X ∼ N [0,σ2R(X
′
X)−1R′]

under H0, we have the quadratic form:

(Rβ̂ − r)′[σ2R(X
′
X)−1R′]−1(Rβ̂ − r) ∼ χ2

J

P (tn−K > Ctn−K, α
2
) = α

2

P (|tn−K| > Ctn−K, α
2
) = α

Decision Rule Based on the P -value:
A small P-value means reject the null hypothesis.
A large P-value means accept the null hypothesis.

Case 2: F-Test: J > 1, replace σ2 by s2



(Rβ̂ − r)′[R(X
′
X)−1R′]−1(Rβ̂ − r)

σ2
∼ χ2

J

Like in constructing a t-test statistic, we should replace σ2 by s2 in the left hand side:

(Rβ̂ − r)′[R(X′X)−1R′]−1(Rβ̂ − r)

s2

Wald Test:

W = J ⋅ F =
(Rβ̂ − r)′[R(X

′
X)−1R′]−1(Rβ̂ − r)

s2

d
→ χ2

J

Summary of test statistics:

Z ⇒ t → Z(when n → ∞)
Z ⇒ χ2 ⇒ F ⇒ W → χ2(when n → ∞)
F = t2

F ≡
(Rβ̂ − r)′[R(X

′
X)−1R′]−1(Rβ̂ − r)/J

s2

=

(Rβ̂−r)′[R(X′X)−1R′]−1(Rβ̂−r)

σ2 /J

(n−K)s2

σ2 /(n − K)

∼ FJ,n−K

F =
(~e′~e − e′e)/J

e′e/(n − K)
=

(SSRr − SSRur)/J

SSRur/(n − K)

Applications
Case 1: Testing for Joint Significance of Explanatory Variables



Relax Ass 5 (no conditional heteroskedasticity and auto-correlation)

ε|X ∼ N(0,σ2
V)

It allows for conditional heteroskedasticity of known form σ2V = σ2V (X). This is a
strong assumption(V is often an unknown form), so GLS is not widely used in reality as
OLS. Since Ass 5 is obeyed. T and F are useless.

(β̂ − β)|X ∼ N(0,σ2(X
′
X)−1

X
′
VX(X

′
X)−1).

cov(β̂, e|X) ≠ 0.

Cholesky's Decomposition:

Consider the original linear regression model, if we multiply the equation by C, we
obtain the transformed regression model:

GLS estimator:

var(ε∗) = var(Cε) = C
′var(ε)C = C

′
Cσ2

V = V
−1σ2

V = σ2

Case 2: Testing for Omitted Variables

Examples: Granger Causality; Chow test
Case 3: Testing for Linear Restrictions

GLS Estimation

Unbiasedness:

E(β̂|X) = β and E(β̂) = β

Variance:

var(β̂|X) = σ2(X
′
X)−1

X
′
VX(X

′
X)−1≠ σ2(X

′
X)−1

Normal Distribution:

Non-Zero Correlation Between β̂ and e:

V
−1 = C

′
C,

V = C
−1(C

′)−1

CY = (CX)β + Cε or Y ∗ = X
∗β + ε∗

β̂∗ = (X
∗′

X
∗)−1

X
∗′Y ∗

= (X
′
C

′
CX)−1(X

′
C

′
CY )

= (X
′
V

−1
X)−1

X
′
V

−1Y



(1) Approach I: Adaptive Feasible GLS Estimation

(2) Approach II: White and HAC Variance-Covariance Matrix Estimation

White's (1980): heteroskedasticity consistent variance-covariance matrix estimator

Andrews (1991) and Newey and West (1987, 1994): Heteroskedasticity and
Autocorrelation Consistent (HAC) variance-covariance matrix estimation

Solutions:



Ass 2.1: Linearity

yi = x′
iβ + εi

Ass 2.2: Ergodic Stationarity (for {yi,xi})
Ass 2.3: Orthogonality

E(gi) = E(xiεi) = 0

Ass 2.4: Rank condition
E(xix

′
i) = ∑xx is full rank(non-singular).

Ass 2.5: gi is a m.d.s with finite second moments

gi ∼ m. d. s

E(gig
′
i) is nonsingular.

Under Ass 2.1-2.4:

b − β → 0 ⇒ b → β

Proof:

b = (
n

∑
i=1

xix
′
i)

−1
n

∑
i=1

xiyi

b = (
n

∑
i=1

xix
′
i)

−1 n

∑
i=1

xi(x
′
iβ + εi)

using Ass 2.1.

b = β +( 1

n

n

∑
i=1

xix
′
i)

−1

⋅
1

n

n

∑
i=1

xiεi

By Weak Law of Large Numbers(WLLN):

1

n

n

∑
i=1

xix
′
i → E[xix

′
i] = Σxx

using Ass 2.4, ∑xx is invertible.

Assumptions

Consistency of OLS

p p

p



1

n

n

∑
i=1

xiεi → E[xiεi] = 0

using Ass 2.3.

By Lemma 2.3(Continuous Mapping Theorem):

1

n

n

∑
i=1

xix
′
i ⋅

1

n

n

∑
i=1

xiεi → Σ−1
xx ⋅ 0 = 0

hence:

b − β → 0 ⇒ b → β

Under Ass 2.1-2.5:

√n(b − β) → N (0, Σ−1
xxE(gig

′
i)Σ−1

xx )

Proof:

√n(b − β) = ( 1

n

n

∑
i=1

xix
′
i)

−1

⋅ √n( 1

n

n

∑
i=1

xiεi)

let:

Sxx =
1

n

n

∑
i=1

xix
′
i

ḡ =
1

n

n

∑
i=1

xiεi =
1

n

n

∑
i=1

gi

so that:

√n(b − β) = S−1
xx ⋅ √n ḡ

By WLLN:

Sxx → E(xix
′
i) = Σxx

By Ass2.5 + Central Limit Theorem(CLT):

√n ḡ =
1

√n

n

∑
i=1

gi → N(0,E(gig
′
i))

using Ass 2.4:

S−1
xx → Σ−1

xx

p

p

p p

Asymptotic normality of OLS

d

p

d

p



√n ḡ → N(0,E(gig
′
i))

By Slutsky theorem(Lemma 2.4):

√n(b − β) = S−1
xx ⋅ √n ḡ → Σ−1

xx ⋅ N(0,E(gig
′
i))

hence:

√n(b − β) → N (0, Σ−1
xxE(gig

′
i)Σ−1

xx )

ei = εi − x′
i(b − β)

1

n

n

∑
i=1

e2
i =

1

n

n

∑
i=1

ε2
i − 2(b − β)′ ⋅

1

n

n

∑
i=1

xiεi + (b − β)′ ⋅( 1

n

n

∑
i=1

xix
′
i) ⋅ (b − β)

1
n

n

∑
i=1

ε2
i → E(ε2

i ) = σ2

using Ass 2.2 + WLLN.

1

n

n

∑
i=1

xiεi = ḡ → E(gi) = 0

using Ass 2.3 + WLLN.

b − β → 0 (consistency)
so (b − β)′ ⋅ 1

n ∑
n
i=1 xiεi → 0

1
n

n

∑
i=1

xix
′
i → E(xix

′
i) ≡ Σxx

and b − β → 0

so (b − β)′ ⋅ ( 1
n ∑

n
i=1 xix

′
i) ⋅ (b − β) → 0

such that:

p lim
1

n

n

∑
i=1

e2
i = σ2

d

d

d

Asymptotic variance estimator

1. s2 → σ2p

For the first term in RHS:

p

For the second term:

p

p

p

For the third term:

p

p

p



s2 =
1

n − K
⋅

n

∑
i=1

e2
i =

1

n

n

∑
i=1

e2
i

hence:

s2 → σ2

S = E(gig
′
i) = E(xiεiε

′
ix

′
i)

By the law of iterated expectation(IIE) and under conditional homoskedasticity:

S = E(E(xiεiε
′
ix

′
i|xi) = E(xix

′
iE(εiε

′
i|xi)) = σ2E(xix

′
i)

for: s2 → σ2, Sxx → E(xix
′
i) = Σxx

then: Ŝ → S

Âvar(b) = S−1
xx ŜS

−1
xx → Σ−1

xxE(gig
′
i)Σ−1

xx = Avar(b)

the same as chap1, see case 1 below.

H0 : h(bOLS) = 0

Use the delta method: H(b) ≡ ∂h(b)
∂b′

W = n ⋅ h(bOLS)′[H(bOLS)Avar(bOLS)H(bOLS)′]−1
h(bOLS)→χ2(p)

p is the number of constraint conditions.
Detail of Wald test will be discussed in chap3.

p

2. Ŝ → S
p

p p

p

3. Âvar(b) → Avar(b)
p

p

Hypothesis testing
Testing linear hypotheses

Testing non-linear hypotheses

d



J = 1:

T =
Rβ̂ − r

√s2R(X′X)−1R′
→ N(0, 1)

J > 1:

J = 1:

Tr =
√n(Rβ̂ − r)

√RQ̂−1V̂ Q̂−1R′

→ N(0, 1)

J > 1:

Wr = n(Rβ̂ − r)′(RQ̂−1V̂ Q̂−1R′)
−1

(Rβ̂ − r)
d

→χ2
J

Summary of Yongmiao Hong's book(chap4):
(1)β̂ → β as n → ∞

(2)√n(β̂ − β) → N(0,Q−1VQ−1) as n → ∞

where Q = E(XiX
′
i),V = E(XiX

′
iε

2
i )

(3)if E(ε2
i |Xi) = σ2, V = σ2Q, Q−1VQ−1 = σ2Q−1

Q : Q̂ =
1

n

n

∑
i=1

XiX
′
i → Q

V : V̂ =
1

n

n

∑
i=1

XiX
′
ie

2
i → V

Q̂−1V̂ Q̂−1 → Q−1VQ−1

p

d

p

p

p

Case I: Conditional Homoskedasticity

d

W ≡ (Rβ̂ − r)′[s2R(X
′
X)−1R′]

−1
(Rβ̂ − r) = J ⋅ F

d
→χ2

J

Case II: Conditional Heteroskedasticity

d



yi = x′
iβ + ui, ui ∼ NID(0,σ2)

normal distribution:

f(yi|xi;β,σ2) =
1

√2πσ2
exp{−

1

2

(yi − x′
iβ)2

σ2
}

the loglikelihood function:

logL(β,σ2) = −
N

2
log(2π) −

N

2
log(σ2) −

1

2

N

∑
i=1

(yi − x′
iβ)2

σ2

the score vector:

s(θ) ≡
∂ logL(θ)

∂θ
=

N

∑
i=1

∂ logLi(θ)

∂θ
≡

N

∑
i=1

si(θ)

si(β,σ2) = =

FOC implies:

β̂ = (
N

∑
i=1

xix
′
i)

−1 N

∑
i=1

xiyi and σ̂2 =
1
N

N

∑
i=1

(yi − x′
iβ̂)2

Information matrix:

I(θ) ≡ E[s(θ)s(θ)′] = −E[
∂ 2 logL(θ)

∂θ∂θ′
]

Ii(β,σ2) = E[si(β,σ2)si(β,σ2)′]

calculation:

E(sis
′
i) = E[ ] ⋅ [

ui

σ2
xi, −

1

2σ2
+

u2
i

2σ4
]

= E

since E(ui) = 0, E(u2
i ) = σ2, E(u3

i ) = 0, E(u4
i ) = 3σ4, we can finally get

MLE Basics

⎛
⎝

∂ logLi(β,σ2)
∂β

∂ logLi(β,σ2)
∂σ2

⎞
⎠

⎛
⎝

(yi−x′
iβ)

σ2 xi

− 1
2σ2 + 1

2
(yi−x′

iβ)2

σ4

⎞
⎠

ui

σ2 ⋅ xi

− 1
2σ2 +

u2
i

2σ4

⎡⎢⎣ ( ui

σ2 xi)
2

− uixi

2σ4 +
u3
i
xi

2σ6

− uixi

2σ4 +
u3
ixi

2σ6 (− 1
2σ2 +

u2
i

2σ4 )
2

⎤⎥⎦



Ii(β,σ2) = ( )

The asymptotic covariance matrix:

V = I(β,σ2)−1 = ( )

√N(β̂ − β) → N (0,σ2Σ−1
xx )

√N(σ̂2 − σ2) → N (0, 2σ4)

logL = −
n

2
log(2π) −

n

2
log(σ̃2) −

1

2σ̃2
ũ′ũ

SSR = ũ′ũ, σ̃2 =
SSR

n

⇒ logL = −
n

2
log(2π) −

n

2
log

SSR

n
−

n

2

⇒ L = (
2π

n
)− n

2 ⋅ e− n
2 ⋅ (SSR)− n

2

λ ≡ LU/LR ≡ (
SSRU

SSRR
)−n/2

F =
(SSRR − SSRU)/#r

SSRU/n − k − 1
=

n − k − 1

#r
(λ

2
n − 1)

We have already seen in chap 2:

1
σ2 xix

′
i 0

0 1
2σ4

σ2Σ−1
xx 0

0 2σ4

Hypothesis test

LR(Likelihood Ratio Test)

Wald Test



W = n ⋅ h(bOLS)′[H(bOLS)Avar(bOLS)H(bOLS)′]−1
h(bOLS)→χ2(p)

For nonlinear hypotheses:

H0 : h(θ) = 0

By first-order Taylor expansion:

h(θ̂) ≈ H(θ)(θ̂ − θ)

H(θ) =
∂h(θ)

∂θ′

Wald Test Statistic:

W = n ⋅ h(θ̂)′[ĤÂvar(θ̂)Ĥ ′]−1h(θ̂)

Âvar(θ̂) can be the inverse of information matrix.

Wald Test Examples(see lecture note):
(1)Tests of Exclusion Restrictions
(2)Tests of Statistical Significance
(3)Tests of Nonlinear Restriction

Verbeek 6.1.1+6.2.3:

(1)

L(p) = (N

N1
)pN1(1 − p)N−N1

logL(p) = log(N

N1
)+ N1 log p + (N − N1) log(1 − p)

(2)

d logL(p)

dp
=

N1

p
−

N − N1

1 − p
= 0

p̂ =
N1

N

(3)

logLi(p) = yi log p + (1 − yi) log(1 − p)

∂ logLi(p)

∂p
=

yi

p
−

1 − yi

1 − p

W ≡ (R
~
β − r)′[s2R(X

′
X)−1R′]

−1
(R

~
β − r)

d
→χ2

J

d

Examples



−
∂ 2 logLi(p)

∂p2
=

yi

p2
+

1 − yi

(1 − p)2

I = E{−
∂ 2 logLi(p)

∂p2
} =

E{yi}

p2
+

1 − E{yi}

(1 − p)2
=

1

p
+

1

1 − p
=

1

p(1 − p)

note that E{yi} = p

V = I−1

√n(p̂ − p) → N (0, p(1 − p))

(4)

p ± za/2
√ p(1 − p)

n
= 0.44 ± 1.96√

0.44(1 − 0.44)

100
= (0.3427, 0.5373)

(5)H0 : p̂ = p0 for a given value p0

Wald test :

W = N(p̂ − p0)[p̂(1 − p̂)]−1(p̂ − p0)

For LR test we need to compare the unrestricted and the restricted model:

logL(p̂) = N1 log(N1/N) + (N − N1) log(1 − N1/N)

logL(~p) = N1 log(p0) + (N − N1) log(1 − p0)

LR = 2(logL(p̂) − logL(~p))

Verbeek Exercise 6.2:

a.

L(β1,β2) =
N

∏
i=1

e−eβ1+β2xi
eβ1+β2xi

yi

yi!

logL(β1,β2) =
N

∑
i=1

[−eβ1+β2xi + yi(β1 + β2xi) − log(yi!)]

b.

∂ logL

∂β1
=

N

∑
i=1

(yi − eβ1+β2xi) =
N

∑
i=1

(yi − λi)

∂ logL
∂β2

=
N

∑
i=1

(yi − eβ1+β2xi)xi =
N

∑
i=1

(yi − λi)xi

s(β) = ( )

si(β) = ( )

∑N
i=1(yi − λi)

∑N
i=1(yi − λi)xi

yi − λi

(yi − λi)xi



given E[yi|xi] = λi:

E[yi − λi|xi] = 0

E[(yi − λi)xi|xi] = xiE[yi − λi|xi] = 0

E[si(β)|xi] = E[si(β)] = 0

c. ∂ 2 logL

∂β2
1

= ∑N
i=1(−λi), ∂ 2 logL

∂β2
2

= ∑N
i=1(−λix

2
i ), 

∂ 2 logL
∂β1∂β2

= ∑N
i=1(−λixi)

H(β) = −( )

I(β) = −E[H(β)] = ( ) = ( )

the asymptotic covariance matrix: Var(β) = I(β)−1

consistent estimator: V̂ar(β̂) = Î(β̂)−1, λ̂i = exp(β̂1 + β̂2xi)

∑λi ∑λixi

∑λixi ∑λix
2
i

∑E[λi] ∑E[λixi]

∑E[λixi] ∑E[λix
2
i ]

∑λi ∑λixi

∑λixi ∑λix
2
i



Ass 3.1: Linearity

yi = z′
iδ + εi

Ass 3.2: Ergodic Stationarity (for wi = {yi,xi, zi})

Ass 3.3: Orthogonality

E(gi) = E(xiεi) = 0

Ass 3.4: Rank condition
E(xiz

′
i)∑xz is full rank, Rank(∑xz) = L

when K=L, ∑−1
xz  exisits.

Ass 3.5: gi is a m.d.s with finite second moments

gi ∼ m. d. s

E(gig
′
i) is nonsingular.

Ass 3.6: finite fourth moments
E[(xikz

′
il)

2] exists and finite.

Ass 3.7: Conditional Homoskedasticity

Z = Xπ + v

first stage:

Ẑ = X(X ′X)−1X ′Z = PZ

second stage:

δ̂IV = (Ẑ ′Ẑ)−1Ẑ ′y

By WLLN, CLT and some lemmas(see GMM):

δ̂IV → δ

CAN: Consistent and Asymptotically Normal

Assumptions

2SLS

p



yi = z′
iδ + εi

E(gi) ≡ E(xiεi) = E(xi(yi − z′
iδ)) = 0

gn(
~
δ) =

1
n

n

∑
i=1

xi(yi − z′
i
~
δ) =

1
n

n

∑
i=1

xiyi −
1
n

n

∑
i=1

xiz
′
i
~
δ = sxy − Sxz

~
δ

GMM estimator:

~
δ(Ŵ) = arg min

~
δ

n gn(
~
δ)′Ŵgn(

~
δ) = arg min

~
δ

n(sxy − Sxz
~
δ)′Ŵ(sxy − Sxz

~
δ)

FOC:

~
δ(Ŵ) = (S ′

xzŴSxz)
−1
S ′
xzŴsxy

sample error:

~
δ(Ŵ) − δ = (S ′

xzŴSxz)
−1
S ′
xzŴsxy − (S ′

xzŴSxz)
−1(S ′

xzŴSxz)δ = (S ′
xzŴSxz)

−1S ′
xzŴ

–g

base on

sxy =
1

n

n

∑
i=1

xi(z
′
iδ + εi) =

1

n

n

∑
i=1

xiz
′
iδ +

1

n

n

∑
i=1

xiεi = Sxzδ + ḡ

the same as chap4

Under Ass 3.1-3.4:

p lim
n→∞

~
δ(Ŵ) = δ

Proof:

Ass 3.2, 3.4 ⇒Sxz → Σxz , Σxz is column full rank(K ≥ L）

Ass 3.2-3.3 ⇒ḡ = 1
n
∑n

i=1 gi → 0  

GMM Basics

Assumptions

Proposition 3.1 Asymptotic distribution of GMM estimator

Consistency

p

p



Ŵ → W  by the definition of W(symmetric and positive definite weight matrix)

By Slutsky theorem:

S ′
xzŴSxz → Σ′

xzWΣxz

S ′
xzŴḡ → Σ′

xzW ⋅ 0 = 0

hence:

~
δ(Ŵ) − δ → (Σ′

xzWΣxz)
−1

⋅ 0 = 0

p lim
~
δ(Ŵ) = δ

Under Ass 3.5:

√n(~
δ(Ŵ) − δ) → N(0, Avar(

~
δ(Ŵ)))

Avar(
~
δ(Ŵ)) = (Σ′

xzWΣxz)
−1

Σ′
xzWSWΣxz(Σ′

xzWΣxz)
−1

S = E[gig
′
i] = E[xix

′
iε

2
i ]

proof:

√n(~
δ(Ŵ) − δ) = (S ′

xzŴSxz)
−1
S ′
xzŴ ⋅ √n ḡ

By CLT:

√n ḡ → N(0,S)

By Slutsky theorem:

S ′
xzŴSxz → Σ′

xzWΣxz

S ′
xzŴ → Σ′

xzW

hence:

√n(
~
δ(Ŵ) − δ) → (Σ′

xzWΣxz)
−1

Σ′
xzW ⋅ N(0,S)

Avar(
~
δ(Ŵ)) = (Σ′

xzWΣxz)
−1

Σ′
xzWSWΣxz(Σ′

xzWΣxz)
−1

Âvar(
~
δ(Ŵ)) → Avar(

~
δ(Ŵ))

p

p

p

p

Asymptotic normality

d

d

p

p

d

Consistent estimate of Avar(
~
δ(Ŵ))

p



Proof:

Âvar(
~
δ(Ŵ)) = (S ′

xzŴSxz)
−1
S ′
xzŴŜŴSxz(S

′
xzŴSxz)

−1

Sxz → Σxz, Ŵ → W , Ŝ → S

Âvar(
~
δ(Ŵ)) → (Σ′

xzWΣxz)
−1

Σ′
xzWSWΣxz(Σ′

xzWΣxz)
−1

Under Ass 3.1-3.2 + E(ziz
′
i) exists and is finite:

1

n

n

∑
i=1

ε̂2
i

p
⟶ E(ε2

i )

Proof:

ε̂i = εi − z′
i(δ̂ − δ)

ε̂2
i = ε2

i − 2(δ̂ − δ)′ziεi + (δ̂ − δ)′ziz
′
i(δ̂ − δ)

1

n

n

∑
i=1

ε̂2
i =

1

n

n

∑
i=1

ε2
i − 2(δ̂ − δ)′( 1

n

n

∑
i=1

ziεi)+ (δ̂ − δ)′( 1

n

n

∑
i=1

ziz
′
i)(δ̂ − δ)

hence:

1

n

n

∑
i=1

ε̂2
i

p
⟶ E(ε2

i )

To minimize Avar(
~
δ(Ŵ)), choose Ŝ−1 as the weighting matrix.

Avar(
~
δ(Ŵ)) = (Σ′

xzWΣxz)
−1Σ′

xzWSWΣxz(Σ′
xzWΣxz)

−1

Avar(
~
δ(Ŝ−1)) = (Σ′

xzS
−1Σxz)

−1

Âvar(
~
δ(Ŝ−1)) = (S ′

xzŜ
−1Sxz)

−1

p p p

p

Proposition 3.2 consistent estimation of error variance

For the first term in RHS, using Ass 3.2 + WLLN: 1
n ∑ ε2

i → E(ε2
i )

p

For the second term, δ̂ − δ → 0 (consistency), 1
n
∑ ziεi → E(ziεi) exists and is finite

(by Cauchy-Schwartz inequality)

p

For the third term, δ̂ − δ → 0， 1
n
∑ ziz

′
i → E(ziz

′
i) exists and is finitep

The Efficient GMM Estimator



Under Ass 3.7(conditional homoskedasticity):

S = E(xix
′
iε

2
i ) = E[xix

′
iE(ε2

i |xi)] = σ2E(xix
′
i)

as is proofed in chap2:
s2 → σ2, Sxx → E(xix

′
i) = Σxx, Ŝ → S

don't forget the projection matrix P is symmetric and idempotent.

Under Ass 3.1-3.5:

(a) Under the null H0 : δ = δ̄

t ≡
√n(

~
δ(Ŵ) − δ̄)

√Âvar(
~
δ(Ŵ))

d
⟶ N(0, 1)

(b) Under the null H0 : Rδ = r

W ≡ n(R
~
δ(Ŵ) − r)′{R[Âvar(

~
δ(Ŵ))]R′}−1(R

~
δ(Ŵ) − r)

d
⟶ χ2(#r)

(c) Under the null H0 : a(δ) = 0

W ≡ na(
~
δ(Ŵ))′{A(

~
δ(Ŵ))[Âvar(

~
δ(Ŵ))]A(

~
δ(Ŵ))′}−1a(

~
δ(Ŵ))

d
⟶ χ2(#a)

(d) δ̄ is from restricted model, ~δ is from unrestricted model:

LR ≡ J(δ̄(Ŝ−1), Ŝ−1) − J(
~
δ(Ŝ−1), Ŝ−1) → χ2

From GMM to 2SLS

p p p

β̂GMM = (S ′
xzŜ

−1Sxz)
−1S ′

xzŜ
−1sxy

= (S ′
xz(s

2Sxx)−1Sxz)
−1
S

′
xz(s

2Sxx)−1sxy

= (S ′
xzS

−1
xx Sxz)

−1
S ′
xzS

−1
xx sxy

= ( Z ′X

n
(
X ′X

n
)−1 X

′Z

n
)

−1
Z ′X

n
(
X ′X

n
)−1 X

′y

n

= (Z ′X(X ′X)−1X ′Z)
−1
Z ′X(X ′X)−1X ′y

= (Z ′PXPXZ)
−1
Z ′PXy

= (Ẑ ′Ẑ)−1Ẑ ′y

= β̂2SLS

Proposition 3.3 Robust t ratio and Wald statistics

d



Under Ass 3.1-3.5:

J(
~
δ(Ŝ−1), Ŝ−1) = ngn(

~
δ(Ŝ−1))′Ŝ−1gn(

~
δ(Ŝ−1)) → χ2(K − L)

√nḡ → N(0, S), Ŝ → S

Under conditional homoskedasticity, J becomes Sargan Statistic:

n(sxy − Sxz
~
δ2SLS)′(s2Sxx)−1(sxy − Sxz

~
δ2SLS)

Under Ass 3.1-3.5:

C ≡ J − J1 → χ2(K − K1)

need K1 ≥ L

Proposition 3.6 Hansen’s test of overidentifying restrictions

d

d p

Proposition 3.7 Testing a subset of orthogonality conditions



Basic formulars:

gn(δ) = ḡ =
1

n

n

∑
i=1

gi

GMM estimator:

~
δ(Ŵ) = (S ′

xzŴSxz)
−1
S ′
xzŴsxy

sample error:

~
δ − δ = (S ′

xzŴSxz)
−1S ′

xzŴḡ

sample moment:

gn(
~
δ) = sxy − Sxz

~
δ

In efficient GMM: Ŵ = Ŝ−1. By the definition, Ŵ  is a K × K symmetric and positive
definite matrix.

First-order Taylor expansion:

the weighted form projection matrix:

P = Sxz(S
′
xzŴSxz)

−1S ′
xzŴ

Rank(P) = L, since Sxz is full column rank(=L).

gn(
~
δ) = (IK − P)ḡ = Mgn(δ)

Rank(M) = tr(M) = tr(IK) − tr(P) = K − L

Conclusion:

J(δ,S−1) = n. –g′
S−1–g = (√n–g)′S−1(√n–g) ∼ χ2(K)

J(
~
δ(Ŝ−1), Ŝ−1) = n. gn(

~
δ(Ŝ−1))′Ŝ−1gn(

~
δ(Ŝ−1)) → χ2(K − L)

The reason for the loss of degrees of freedom is: When constructing gn(
~
δ), we used ~δ

to replace the true δ, which is equivalent to imposing L constraints on the sample
moments (by projecting ḡ onto the column space of Sxz through the projection matrix P
), which can also explain why we use the degrees of freedom n − K in OLS estimation.

gn(
~
δ) ≈ gn(δ) +

∂gn(
~
δ)

∂
~
δ

~
δ=δ

(
~
δ − δ)

= ḡ − Sxz(
~
δ − δ)

= ḡ − Sxz(S
′
xzŴSxz)

−1S ′
xzŴḡ∣ d



Ass 4.1: Linearity

yim = z
′

imδm + εim

= +

Ass 4.2: Jointly Ergodic Stationarity

{wi} = {yi1, . . . , yiM , zi1, . . . , ziM , xi1, . . . , xiM}

Ass 4.3: Orthogonality

E(xim ⋅ εim) = 0

We don't assume cross equation orthogonalities.

Ass 4.4: Rank condition
E(ximz′

im) is full column rank.

Ass 4.5: gi is a m.d.s with finite second moments

gi ∼ m. d. s

E(gig′
i) is nonsingular.

Ass 4.6: finite fourth moments
E[(ximkz

′
ihl)

2] exists and finite.

Ass 4.7: conditional homoskedasticity

Assumptions

⎡⎢⎣ y1

n × 1

⋮
yM

n × 1

⎤⎥⎦ ⎡⎢⎣ Z1

n × L1

⋱
ZM

n × LM

⎤⎥⎦⎡⎢⎣ δ1

L1 × 1

⋮
δM

LM × 1

⎤⎥⎦ ⎡⎢⎣ ε1

n × 1

⋮
εM

n × 1

⎤⎥⎦



ḡ ≡
1
n

n

∑
i=1

gi = = gn(δ)

population moment:

sample moment:

MEGMM

⎡⎢⎣ 1
n ∑

n
i=1 xi1 ⋅ εi1

⋮
1
n ∑

n
i=1 xiM ⋅ εiM

⎤⎥⎦E[gi] ≡

= −

= −

≡ σxy − Σxz
~
δ

⎡⎢⎣ E[xi1 ⋅ (yi1 − z
′

i1
~
δ1)]

⋮

E[xiM ⋅ (yiM − z
′

iM

~
δM)]

⎤⎥⎦⎡⎢⎣ E(xi1 ⋅ yi1)

⋮
E(xiM ⋅ yiM)

⎤⎥⎦ ⎡⎢⎣ E(xi1z
′

i1)
~
δ1

⋮

E(xiMz
′

iM)
~
δM

⎤⎥⎦⎡⎢⎣ E(xi1 ⋅ yi1)

⋮
E(xiM ⋅ yiM)

⎤⎥⎦ ⎡⎢⎣E(xi1z
′

i1) … 0

⋮ ⋱ ⋮

0 … E(xiMz
′

iM)

⎤⎥⎦⎡⎢⎣ ~
δ1

⋮
~
δM

⎤⎥⎦gn(
~
δ) =

= −

= −

≡ sxy − Sxz
~
δ

⎡⎢⎣ 1
n
∑n

i=1 xi1 ⋅ (yi1 − z
′

i1
~
δ1)

⋮
1
n ∑

n
i=1 xiM ⋅ (yiM − z

′

iM

~
δM)

⎤⎥⎦⎡⎢⎣ 1
n ∑

n
i=1 xi1 ⋅ yi1

⋮
1
n ∑

n
i=1 xiM ⋅ yiM

⎤⎥⎦ ⎡⎢⎣ 1
n ∑

n
i=1 xi1z

′

i1
~
δ1

⋮
1
n
∑n

i=1 xiMz
′

iM

~
δM

⎤⎥⎦⎡⎢⎣ 1
n
∑n

i=1 xi1 ⋅ yi1

⋮
1
n
∑n

i=1 xiM ⋅ yiM

⎤⎥⎦ ⎡⎢⎣ 1
n ∑

n
i=1 xi1z

′

i1

⋱
1
n
∑n

i=1 xiMz
′

iM

⎤⎥⎦⎡⎢⎣ ~
δ1

⋮
~
δM

⎤⎥⎦S = E(gig
′

i) =
⎡⎢⎣ E(εi1εi1xi1x

′

i1) … E(εi1εiMxi1x
′

iM)

⋮ ⋮

E(εiMεi1xiMx
′

i1) … E(εiMεiMxiMx
′

iM)

⎤⎥⎦



Ŵ =

MEGMM estimator:

FOC:

SEGMM is a special case of MEGMM when:

Ŵ = diag(Ŵ11, … , ŴMM)

Efficient MEGMM is equivalent to Efficient SEGMM when:

⎡⎢⎣ Ŵ11 Ŵ12 … Ŵ1M

Ŵ′
12 Ŵ22 … Ŵ2M

⋮ ⋮ ⋱ ⋮

Ŵ′
1M Ŵ′

2M … ŴMM

⎤⎥⎦~
δ(Ŵ) = arg min

~
δ

J(~
δ, Ŵ) = arg min

~
δ

ngn(~
δ)′Ŵgn(~

δ)

= arg min
~
δ

n(sxy − Sxz
~
δ)′Ŵ(sxy − Sxz

~
δ)

~
δ(Ŵ) = (S ′

xzŴSxz)−1S ′
xzŴsxy =

−1

×

⎛⎜⎝ S
′

x1z1
Ŵ11Sx1z1 S

′

x1z1
Ŵ12Sx2z2 … S

′

x1z1
Ŵ1MSxMzM

S
′

x2z2
Ŵ

′

12Sx1z1 S
′

x2z2
Ŵ22Sx2z2 … S

′

x2z2
Ŵ2MSxMzM

⋮ ⋮ ⋱ ⋮

S
′

xMzM
Ŵ

′

1MSx1z1 S
′

xMzM
Ŵ

′

2MSx2z2 … S
′

xMzM
ŴMMSxMzM

⎞⎟⎠ ⎛⎜⎝ S
′

x1z1
Ŵ1MsxMyM

S
′

x2z2
Ŵ2MsxMyM

⋮

S
′

xMzM
ŴMMsxMyM

⎞⎟⎠SEGMM versus MEGMM

1. Each equation is just identified.
2. At least one equation is over-identified but S is block diagonal.

E[gimg
′
ih] = E[εimεih ximx

′
ih] = 0 for all m ≠ h



Multiple-Equation GMM 

To go from the second-to-last to the last line, use formulas (A.6) and (A.7) of 
the appendix on partitioned matrices. If you find the operation too much, just set 
M = 2. 

Keen
Rectangle



Table 4.1: Multiple-Equation GMM in the Single-Equation Format 

Sample Analogue of - - 
Orthogonality Conditions: gn(6) = s,, - Sxz6 = 0 

GMM Estimator: i (G)  = ( s ~ ~ ~ s ~ ~ ) - ~ s ~ ~ ~ ~ ~ ~  

Its Sampling Error: i ( G )  - 6 = (s&Gs,)-'s~,@~ 

Asymptotic Variance of 
Optimal GMM: ~var(i(S-l)) = (X;,S-~ zm)-l 

Its Estimator: ~var(i(S-l)) = (S&S-'SXz)-' 

J Statistic: J(~(S-') ,  Spl )  = n . gn (i(S-l))lS-lgn ($(Spl)) 

Single-Equation GMM 

applied to the Multiple-Equation GMM 

gi 

Estimator consistent 

under which 

assumptions? 

Size of W 

X xz 

Estimator asymptotic 

normal under which 

equation in question 

xi . ~i (4.1.4) 

K x K  

E(x~z:) 

d.f. of J I K - L  I E,(Km-Lm) 

Ern Km x E m  Km 

(4.1.9) 

I 
A 

S + p  S under 

which assumptions? I 
3.1, 3.2, 3.6, E(gig:) finite 4.1,4.2,4.6, E(gig:) finite 



Under Ass 4.1-4.5 and 4.7,

E(εimεih|xim, xih) = σmh

S = E[ximx
′

ihεimεih] = σmhE[ximx
′

ih] =

σ̂2
mh → σ2

mh(E(zimz′
ih) exists and finite), 1

n ∑ximx
′
ih → E(ximx

′
ih), Ŝ → S

Large-Sample properties:

Special Cases of MEGMM: FIVE, 3SLS and SUR

Full-Information Instrumental Variables Efficient (FIVE)

⎡⎢⎣ σ11E(xi1x
′

i1) … σ1ME(xi1x
′

iM)

⋮ ⋱ ⋮

σM1E(xiMx
′

i1) … σMME(xiMx
′

iM)

⎤⎥⎦p p p

1. ~δFIVE =
~
δ(Ŝ−1) is consistent, asymptotically normal, and efficient with Avar(

~
δ(Ŝ−1)).

Avar(
~
δFIVE) = (Σ′

xzS
−1Σxz)−1

2. Âvar(
~
δFIVE) is consistent for Avar(

~
δFIVE):

Âvar(
~
δFIVE) = (S ′

xzŜ
−1Sxz)−1

3. Sargan’s Statistic:

J(~
δFIVE, Ŝ−1) ≡ n ⋅ gn(~

δFIVE)′Ŝ−1gn(~
δFIVE) → χ2(∑

m

(Km − Lm))
d



Under Ass 4.1-4.5 and 4.7 + same instruments for all equations:
xi1 = xi2 = … = xim = xi

moment conditions:

gi = = εi ⊗ xi, with εi ≡

Efficient Weight matrix:

S3SLS = = Σ ⊗ E[xix
′

i] ,

with Σ = E[εiε
′

i] =

Σ̂ ≡ =
1
n

n

∑
i=1

ε̂iε̂
′

i, Sxx =
1
n

X′X

Large-Sample properties:

Under Ass 4.1-4.5 and 4.7 + same instruments for all equations + the predetermined
regressors satisfy "cross" orthogonalities: E[zimεih] = 0 (without endogeneity)

Efficient Weight Matrix:

Three-Stage Least Squares (3SLS)

⎡⎢⎣ xiεi1

⋮
xiεiM

⎤⎥⎦ ⎡⎢⎣ εi1

⋮
εiM

⎤⎥⎦⎡⎢⎣ σ11E[xix
′

i] σ12E[xix
′

i] … σ1ME[xix
′

i]

σ12E[xix
′

i] σ22E[xix
′

i] … σ2ME[xix
′

i]

⋮ ⋮ ⋱ ⋮

σ1ME[xix
′

i] σ2ME[xix
′

i] … σMME[xix
′

i]

⎤⎥⎦⎡⎢⎣σ11 σ12 … σ1M

σ12 σ22 … σ2M

⋮ ⋮ ⋱ ⋮
σ1M σ2M … σMM

⎤⎥⎦⎡⎢⎣ σ̂11 … σ̂1M

⋮ ⋮
σ̂M1 … σ̂MM

⎤⎥⎦1. ~δ3SLS is consistent, asymptotically normal, and efficient with Avar(
~
δ3SLS).

2. Âvar(~
δ3SLS) is consistent for Avar(~

δ3SLS).
3. Sargan’s Statistic:

J(
~
δ3SLS, Ŝ−1) ≡ n ⋅ gn(

~
δ3SLS)′Ŝ−1gn(

~
δ3SLS) → χ2(MK −∑

m

Lm)
d

Seemingly Unrelated Regression (SUR)



SSUR = = Σ ⊗ E[ziz
′

i]

Large-Sample properties:

the same as SEGMM versus MEGMM:

⎡⎢⎣ σ11E[ziz
′

i] σ12E[ziz
′

i] … σ1ME[ziz
′

i]

σ12E[ziz
′

i] σ22E[ziz
′

i] … σ2ME[ziz
′

i]

⋮ ⋮ ⋱ ⋮

σ1ME[ziz
′

i] σ2ME[ziz
′

i] … σMME[ziz
′

i]

⎤⎥⎦1. ~δSUR is consistent, asymptotically normal, and efficient with Avar(
~
δSUR).

2. Âvar(
~
δSUR) is consistent for Avar(

~
δSUR).

3. Sargan’s Statistic:

J(
~
δSUR, Ŝ−1) ≡ n ⋅ gn(

~
δSUR)′Ŝ−1gn(

~
δSUR) → χ2(MK −∑

m

Lm)
d

SUR versus OLS

1. Each equation is just identified.
2. At least one equation is over-identified. Need assumption that

σmhE(xix
′
i) = 0 for all m ≠ h



Table 4.2: Relationship between Multiple-Equation Estimators 

Multivariate 
regression 

Assumptions 4.1-4.5, 
Assumption 4.7 

xi, = xi for all m 
Zim = xi for all m 

irrelevant 

irrelevant 

equation-by-equation 
OLS 

OLS formula 

OLS formula 

The model 

S (E Avar(g)) 

$ 

4.1-4.5, 

(4.3.3) (4.3.3) 

(4.3.4) (4.3.4) 

Multiple- 

equation GMM 

Assumptions 
4.1-4.6 

(4.1.11) 

(4.3.2) 

Assumption 4.7 
E(zirnzih) finite 

xi, = xi for all m 

C 8 E(x~x:) 
A 

C 8 (n-I C ~ X ~ X ; )  
A 

C from 2SLS residuals 

(4.5.12) 
with (4.5.13), (4.5.14) 

(4.5.15) 
with (4.5.16) 

(4.5.17) 
with (4.5.13) 

FIVE 

Assumptions 4.1-4.5, 
Assumption 4.7 
E(Z~,Z;~) finite 

(4.5.2) 

(4.5.3) 

Assumption 4.7 
xi, = xi for all m 

xi = union of zil , . . . , Z ~ M  

C 8 E(x~x:) 
A 

C 8 (n-'Cixix:) 
A 

C from OLS residuals 

(4.5.12) 
with (4.5.13'), (4.5.14') 

(4.5.15) 
with (4.5.16') 

(4.5.17) 
with (4.5.13') 

Keen
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Three-Stage Least Squares is a systems estimation method for simultaneous
equation models. Unlike single-equation methods like 2SLS, it estimates all equations
simultaneously, improving efficiency when error terms across equations are
correlated.

2SLS 3SLS
Estimation Equation-by-equation All equations

Information Used Within-equation information 
only

Full system 
information

Cross-equation Error 
Correlations

Ignored Considered

Efficiency Lower Higher

If error terms across equations are uncorrelated, 3SLS reduces to 2SLS. In practice,
economic relationships often create correlated errors due to omitted variables, making
3SLS more efficient.

yim = z′
imδ + εim

y = (Y γ + Xβ) + ε = Zδ + ε

Three-Stage Least Squares (3SLS)

2SLS vs. 3SLS

Estimation

Prerequisites

1. No autocorrelation within each equation's error term.
2. Contemporaneous correlation between error terms of different equations.
3. The system must be overidentified (verified via order and rank conditions).

Model Setup



reduced form:

Z = Xπ + v

structural model:

y = Ẑδ + u

Σ̂ =

δ̂3SLS = [Ẑ ′ (Σ̂−1 ⊗ I)Ẑ]
−1

Ẑ ′ (Σ̂−1 ⊗ I)y

Reference:

Stage 1 (Same as 2SLS)

Stage 2 (Same as 2SLS)

Stage 3

1. Estimate the cross-equation covariance matrix Σ using residuals from Stage 2:

σ̂ij =
û′

iûj

n

⎡⎢⎣ σ̂2
1 σ̂12 ⋯ σ̂1m

σ̂21 σ̂2
2 ⋯ σ̂2m

⋮ ⋮ ⋱ ⋮

σ̂m1 σ̂m2 ⋯ σ̂2
m

⎤⎥⎦2. Apply Generalized Least Squares (GLS) to the entire system. The 3SLS
estimator is:

3SLS: Three-Stage Least Squares - SPUR ECONOMICS
陈强编著.高级计量经济学及Stata应用.第2版.高等教育出版社.2014

https://spureconomics.com/3sls-three-stage-least-squares/


G(z) =
ez

1 + ez

g(z) =
ez

(1 + ez)2

Φ(z) ≡ ∫
z

−∞

ϕ(v)dv

ϕ(z) =
1

√2π
e− z2

2

Coefficient estimates and standard errors in the logit model are roughly π/√3 = 1.8

bigger than in the probit model.

Odds ratio= P(y=1|x=1)
P(y=1|x=0)

y∗
i  is unobserved, it is referred to as a latent variable.

Estimation:

Binary choice model

Logit & Probit mode

Goodness-of-fit:
Goodness-of-fit measures are based on comparison with a model that contains only a 

constant as explanatory variable. Let logL1 denote the maximum loglikelihood value of 

the model of interest and let logL0 denote the maximum value of the loglikelihood
function when all parameters, except the intercept, are set to zero. Clearly, logL1 ≥

l

Latent variable



logL0. The larger the difference between the two loglikelihood values, the more the
extended model adds to the very restrictive model.

the proportion of incorrect predictions:

3.

1. 
2. 



The replacement rate, defined as the ratio of weekly UI(unemployment insurance)
benefits to previous weekly earnings.

The LPM is estimated by OLS, the logit and probit model are both estimated by
maximum likelihood. The estimates of β obtained from the logit model are roughly a
factor π/√3 larger than those obtained from the probit model.

The replacement rate has an insignificant positive coefficient, while its square is
significantly negative. For the probit model, we can derive that the estimated marginal
effect of a change in the replacement rate (rr) equals the value of the normal density
function multiplied by 1.863 − 2 × 2.980rr.

The dummy variable which indicates whether the job was lost because of slack work is
highly significant in all specifications, which is not surprising given that these workers
typically will find it hard to get a new job.

The higher the state unemployment rate and the higher the maximum benefit level, the
more likely it is that individuals apply for benefits.

Illustration: the Impact of Unemployment Benefits on Recipiency



The ceteris paribus effect of being married is estimated to be positive, while,
somewhat surprisingly, being head of the household has a negative effect on the
probability of take-up.

p̂ = 3335/4877

which allows us to compute the pseudo and McFadden R2 measures.
p00 + p11 =

Assuming that εi is i.i.d. standard normal results in the ordered probit model. The
logistic distribution gives the ordered logit model. For M = 2 we are back at the binary
choice model.

Multi-response Models

Ordered Response Models



Normalization:

we assume that all εij are mutually independent with a so-called log Weibull
distribution (also known as a Type I extreme value distribution).

multinomial logit model:

The probability ratio (or odds ratio) is given by:

P(yi = j)

P(yi = k)
=

exp(x′
ijβ)

exp(x′
ikβ)

Illustration: Willingness to Pay for Natural Areas

Multinomial Models

independence of irrelevant alternatives (IIA)



estimation:

equidispersion:

overdispersion:

NegBin I model:

NegBin II model:

Models for Count Data

Poisson regression model



Illustration: Patents and R&D Expenditures



The conditional expectaction of y (for y>0):

λ is called the inverse Mill's ratio.

The unconditional expectaction of y (for all y):

Estimation

The Standard Tobit Model

censored regression model

E(y|y > 0, x) = xβ + E(u|u > −xβ)

= xβ + σE[(u/σ)|(u/σ) > −xβ/σ]
= xβ + σϕ(xβ/σ)/Φ(xβ/σ)

= xβ + σλ(xβ/σ)

E(y|x) = P(y > 0|x) ⋅ E(y|y > 0, x) + P(y = 0|x) ⋅ 0

= P(y > 0|x) ⋅ E(y|y > 0, x)

= Φ(xβ/σ) ⋅ E(y|y > 0, x)

= Φ(xβ/σ)[xβ + σλ(xβ/σ)]
= Φ(xβ/σ)xβ + σϕ(xβ/σ)



Estimation:

For tabacco, age is an important factor in explaining the budget share. For alcoholic
beverages, the number of children and total expenditures are individually significant.

Wald tests for the hypothesis that "all coefficients, except the intercept term, are equal
to zero", produce highly significant values for both goods.

truncated regression model

Illustration: Expenditures on Alcohol and Tobacco (Part 1)



the inverse Mill's ratio: Heckman’s lambda

The Tobit II Model



Estimation:

  Heckman’s two-step estimation

Illustration: Expenditures on Alcohol and Tobacco (Part 2)



For alcoholic beverages, total expenditure, the number of adults in the household as
well as the number of children older than 2 are statistically significant in explaining
abstention.

For tobacco, total expenditure, number of children older than 2, age and being a blue-
collar worker are statistically important explanators for abstention.

For alcoholic beverages the inclusion of λ does not affect the results very much and



we obtain estimates that are pretty close to those reported in Table 7.8. The t-statistic
on the coefficient for λ does not allow us to reject the null hypothesis of no correlation,
while the estimation results imply an estimated correlation coefficient of only −0.01.

ρ =
σ̂1

λ

For tobacco, on the other hand, we do find a significant impact of the sample selection
term λ, with an implied estimated correlation coefficient of −0.31.



yit = x′
itβ + uit, i = 1, … ,n, t = 1, … ,T

xit contains endogenous variables and lagged dependent variables.
IV: Zi(T × L)

population moment:

E[Z ′
iui] = 0

sample moment:

gn(β) =
1
n

n

∑
i=1

Z ′
i(yi − Xiβ)

GMM estimator:

β̂PGMM(W) = (S ′
xzWSxz)−1S

′
xzWszy

asymptotic normality of β̂PGMM:

√n(β̂PGMM − β) → N(0, Avar(β̂PGMM))

Avar(β̂PGMM) = (Σ′
xzWΣxz)

−1Σ′
xzWSWΣxz(Σ′

xzWΣxz)
−1

Âvar(β̂PGMM) = (S ′
xzWSxz)−1S ′

xzŴŜŴSxz(S ′
xzWSxz)−1

Panel-robust standard errors allowing for both heteroskedasticity and auto-
correlation.

Set W = S−1
zz , One-Step GMM or panel-2SLS estimator:

β̂2SLS = [X ′Z(Z ′Z)−1Z ′X]
−1
X ′Z(Z ′Z)−1Z ′y = (X̂ ′X̂)−1X̂ ′y

Âvar(β̂2SLS) = σ̂2(X̂ ′X̂)−1, σ̂2 =
1
nT

∑
i,t

û2
it

Set W = Ŝ−1，Ŝ → S, Two-step GMM estimator (efficient):

β̂2SGMM = [X ′ZŜ−1Z ′X]
−1
X ′ZŜ−1Z ′y

Âvar(β̂2SGMM) = [X ′ZŜ−1Z ′X]
−1

Tests of Over-identifying Restrictions (OIR, Hansen's J):

OIR = J = n ⋅ g(β̂2SGMM)′Ŝ−1g(β̂2SGMM) → χ2(L − K)

Panel GMM

d

d



Zi = , ui =

E[
T

∑
t=1

zituit] = 0

The sum of the expectations between the instruments and the error terms over the
entire sample period is zero.

Zi = , ui =

E[zituit] = 0, t = 1, ⋯ ,T

The instrument in each period is uncorrelated with the error term in the same period.
If x includes time dummies then there are only TK − (T − 1) moment conditions
available.

E[zisuit] = 0, s ≤ t

The current and lagged values of the instrument are uncorrelated with the current
error term.

IV Selection

Summation Assumption

⎡⎢⎣z
′
i1

z
′
i2

⋮
z

′
iT

⎤⎥⎦ ⎡⎢⎣ui1

ui2

⋮
uiT

⎤⎥⎦Contemporaneous Exogeneity Assumption(Stronger)

⎡⎢⎣z
′
i1 0 ⋯ 0

0 z
′
i2 ⋯ ⋮

⋮ ⋮ ⋱ 0

0 ⋯ 0 z
′
iT

⎤⎥⎦ ⎡⎢⎣ui1

ui2

⋮
uiT

⎤⎥⎦How to construct IV: For period t, we use only the current-period instrument and
set instruments from other periods to zero.

Weak Exogeneity Assumption



E[zisuit] = 0, s, t = 1, … ,T

All values of the instrument (past, present, and future) are uncorrelated with the error
term in any period.

Time-invariant instruments can be used only once.
Instruments that are the product of time dummies and a time-invariant regressor
should be included only once.

yit = αi + x′
itβ + uit

Assume E[xisuit] = 0, for all s, t.

To eliminate αi, we typically apply within transformation or first-differencing,
obtaining a transformed model (~yit = ~x′

itβ + ~uit).

However, this transformation loses information, and if xit is strongly
exogenous, then pre-transformation values of xis(s ≠ t) from other periods can
also serve as valid instruments.

Chamberlain's method aims to more fully utilize these cross-period moment
conditions, thereby obtaining a more efficient estimator than the standard
fixed effects estimator.

Chamberlain's model setting: 

yi = eαi + (IT ⊗ β′)xi + ui

e = [1, 1, … , 1]′

Chamberlain assumes the fixed effect αi can be linearly predicted by the explanatory
variables xi (values from all periods):

E ∗[αi|xi] = μ +
T

∑
t=1

λ′
txit = μ + λ′xi

Assume E ∗[ui|αi,xi] = 0

How to construct IV: For period t, we use all instruments up to and including
period t.

Strong Exogeneity Assumption

How to construct IV: For any period t, we can use instruments from all T periods.

Redundant Instruments

Chamberlain’s Optimal Distance Estimator



Step 1: Estimate the Reduced-Form Parameters

Step 2: Minimum Distance Estimation

J(β,λ) = (Vec(Π̂ − IT ⊗ β′ − eλ′))
′
W (Vec(Π̂ − IT ⊗ β′ − eλ′))

no homoskedasticity assumption is needed.

E ∗[yi|xi] = eE ∗[αi|xi] + (IT ⊗ β′)xi

= eμ + (IT ⊗ β′ + eλ′)xi

= Π0 + Π1xi

run a multivariate OLS regression to get the reduced-form parameter Π̂.
estimate the variance-covariance matrix of Π̂: V̂ [Vec(Π̂)] (Vec for Vectorization).

Example



Δ ln hrsit = β1Δ ln wgit + β2Δkidsit + β3Δageit + β4Δagesqit + β5Δdisabit + Δuit

2SLS with Base-Case Instruments: 9 IV
lnwgi,t−2, kidsi,t−1, agei,t−1, agesqi,t−1, disabi,t−1, kidsi,t−2, agei,t−2, agesqi,t−2, disabi,t−2

2SLS with Stacked Instruments: 72(=8×9) IV

The two-step GMM estimator is more efficient than 2SLS.

Test of Overidentifying Restrictions: see OIR Test and its p-value
H0​: All overidentifying moment conditions are valid. In other words: all instruments are
exogenous.

Test of Weak Instruments:
H0​: The correlation between the instruments and the endogenous explanatory variable
is weak./The coefficients of the instruments in the first-stage regression are jointly
zero (or close to zero).



Chap1:

1. Assumptions

For Ass 2, distinguish strict and weak exogeneity.
If we assume that x is unstochastic(fixed regressor), then we don't need
the exogeneity assumption.

2. proposition 1.1, 1.2

don't need to proof but remember the conclusions!

3. hypothesis test
T
F(Wald test)

4. GLS

Chap2:

1. convergence in probability and distribution

Lemmas can be used directly.
Assumptions, WLLN, CLT need to be write down.

2. ergodic stationary, weak stationary, martingale difference stationary
3. OLS large sample properties

consistency
asymptotic normality
asymptotic variance estimation

4. hypothesis test
t: t distribution in finite sample, normal distribution in large sample
F: F distribution in finite sample, Chi2 distribution in large sample

heteroskedasticity is allowed.



Chap3:

1. definitions

conditional and unconditional likelihood function
normal distibution, binominal distibution, logistic distribution
maximum likelihood estimation(only consider the linear model)

2. Cramer-Rao bound

find the least variance's estimator in unbiased estimators.
β̂ can attain the bound, σ̂2 can't.

3. hypothesis test
linear:

Wald:
W1: ∼ χ2, if we know σ2

W2: → χ2, we use s2 to subsitude the unknown σ2

W3=W2/h: ∼ F , since we use the unbiased s2 = SSR/(n − K)

LR: connection with F test
nonlinear:

W → χ2

F = W/h → F

WZ = √W → N

Chap4:
1. edogeneity from

omitted variables
measurement error
simultaneous equations

lead to unbiasedness and inconsistency

2. IV
1. assumptions: correlation, exogeneity
2. estimation, relations to OLS and GMM
3. order condition and rank condition
4. assumptions for large sample(don't need to proof)



5. 2SLS: when just indentified, 2SLS becomes IV.

Chap5:
1. moment/orthogonality condition: population moment, sample moment
2. GMM objective function
3. sample error
4. proposition 3.1, 3.2

consistency
asymptotic normality
asymptotic variance estimation

5. efficient GMM: least variance(Ŵ = Ŝ −1)
6. hypothesis test(proposition 3.6, 3.7, 3.3)

J test(over identifying restriction test) = GMM objective function
H0? df = K - L

7. homoskedasticity
GMM to 2SLS
J to Sargan

asymptotic variance

Chap6:

1. Assumptions: versus SEGMM
2. MEGMM objective function, estimator ~δ

when use zipped matrix write down the dimensions.

3. special cases: FIVE, 3SLS, SUR
Assumptions
large sample properties(don't need to proof)
relations

4. SUR versus OLS(Figure 4.1)



Chap9&10:

1. binary choice model
logit
probit

definition, likelihood function, goodness of fit

2. multiple choice model
orded(extended probit with mutiple hurdles)
non-orded(extended logit, Gumble ditribution)
IIA(odds ratio): idependence between two probabilities

3. count data: possion(estimate by MLE), equidispersion(NegBin I & II)

4. Tobit1

cencered(3 equations, y=0 exists)

logL1= part1 +part2

truncated(2 equtions)
5. Tobit2: 5 parts, sample selection bias=inverse Mill's ratio
6. Heckman 2-step estimation versus MLE

Chap11:

1. GMM conclusions: β̂PGMM , V̂ [β̂PGMM ]

2. IV selection(4 exogeneity assumptions)
3. Chamberlain's optimal distance estimator


