Econometrics

Intermediate level notes
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This is a note from Yongmiao Hong's book, I've changed the subscript t into i, this note
covers the entire content of chap.

Assumptions

Ass 1: Linearity

Yi=XB+e¢;
Ass 2: Strict Exogeneity

E(€Z|X1) =0
By the law of iterated expectations(lIE):
E(Xie;) =0
E(sl) =0

then Cov(X;,e;) =0
Ass 3: Nonsingularity
Rank(X'X) =K <n
Ass 4: Spherical Error Variance
E(e}X) = o?
We can write Ass 2 and Ass 4 compactly as follows:
E(e|X) = 0 and E(ee'|X) = 0’1
Ass 5: Conditional Normality
e|X ~ N(0,0°T)

Ass 5 implies both Ass 2 and Ass 4.

OLS Estimator
B=(X'X)"'X'Y
(S S
P p=
1 g
— (E ;Xixg> — ;XiYi

The FOC implies that the estimated residual e is orthogonal to regressors X:



X'e = iXiei =0
i=1

Sample error:

(X'X)'X'e

)

- B

Define an n x n projection matrix:
P=X(X'X) X'
and
M=I-P

Then both matrices P and M are symmetric (i.e., P = P’ and M = M’) and idempotent
(i.e., P2 = P,M? = M), with

PX = X,

MX =0

then:

SSR(B) = €e'e = Y'MY = &' Me
understanding from the projecting perspective:

projyz = (I-Y(Y7Y)'Y7)a

b - —

—
orthogonal projection
matrix

projyz = Y (YY) 'Yz

-

_-
projection
matrix







Goodness of Fit

Uncentered R?:

Y'Y B ee
Y'Y Y'Y

R, =
Centered R?/Coefficient of Determination:

_ Z?:l 612 _ Z?ﬂ(ﬁ - Y)2
YY) YL (Yi-Y)?

R*=p? ,0<R*<1

R2=1

If the regression function doesn't contain the intercept, then the R? may be negative.

Consistency and Efficiency of the OLS Estimator

« Unbiasedness:
E(BX)=pBand E(B) = 8
« Vanishing Variance:
var(8X) = o2(X'X) !
« Orthogonality:
cov(B,e/X) = 0
« Gauss-Markov Theorem:
var(b|X) - var(B|X) ~ PSD(positive semi-definite)
« Sample Residual Variance Estimator:
s2=¢e/(n—K) = 1 Y e?

n—K i=1

Sampling Distribution of the OLS Estimator
Ass 5: Conditional Normality

e|X ~ N(0,0°T)
Normality of the OLS Estimator:

(B B)X ~ N[0,0*(X'X) ]
R(— B)|X ~ N[0,0*R(X'X) ' R/]

The J x K matrix R is a selection matrix.



Variance Estimation for the OLS Estimator

Residual Variance Estimator:

n— K)s? e'e
( 3 ) == ~ X?L—K
(o3 X o’ |x
Hypothesis Testing
HO : Rﬁ =r

we can consider the statistic R3 — r and check if this difference is significantly
different from zero. Under H,, we have:

RB—r=RB—RB=R(B—B)— 0asn — oo
Under the alternative to Hy: RS # r, but we still have 3 — 8 — 0. It follows that:
RB—r:R(B—ﬂ)+Rﬂ—r—>RB—r7é0asn—>oo
In other words, RB — r will converge to a nonzero limit R3 — r.
Under Hy:
(RB —7)|X ~ N(0,0’R(X'X)'R)
Questions:
(1) var[(RB — 7)|X] = 02R(X'X) 'R’ is a scalar or a matrix?

Rﬁfr

(2) Since o2 is unknown, ————2L___
V?R(X'X) 1R’

is no longer normally distributed.

Case 1: t-Test: J = 1, replace o2 by s>

B R,é -7
V/$*R(X'X) 'R’
RB*T
VOPR(X'X) 'R

NELESENTAS
N(0,1)

) \/XifK/(” - K)

~t, K

« Decision Rule of the t-Test Based on Critical Values:

Reject Hy: |T| > C

a
n—K>7o



P (tn_K > Ctan’ﬂ) = %
P(|tn_K| > Ctan’%) =«

Student's ¢ -distribution

«<—— Acceptance Region ——
Rejection Region Rejection Region
| I | | I
2.5 -1.5 0.5 0.5 1.5 2.5

Figure 3.3 Acceptance and rejection regions of a t-test.

« Decision Rule Based on the P -value:
o A small P-value means reject the null hypothesis.
o A large P-value means accept the null hypothesis.

When we reject a null hypothesis, we often say there is a statistically

significant effect. This does not mean that there is an economic significant effect.
This is because when large samples are used, small and practically unimportant
effects are likely to be statistically significant(since denominator of T which contains s>
is very small when n is infinite).

Case 2: F-Test: J > 1, replace o2 by s

Lemma Quadratic Form of Normal Random Variables:
If a ¢ x 1 random vector Z ~ N(0,V), where V = var(Z) is a nonsingular ¢ x g variance-
covariance matrix, then

Z'V 17~
Applying this lemma, and using the result that
(RB —7)|X ~ N[0,c’R(X'X) 'R/]
under Hy, we have the quadratic form:

(RB —7)'[0*R(X'X) 'R (RB — 1) ~ X



~

(RB—r)[RX'X) 'R Y (RB—1)
) ~XJ

g

Like in constructing a t-test statistic, we should replace o2 by s? in the left hand side:

(RA— r)[R(X'X) 'R (BB — 1)

(R3—r) [R(X'X) 'R "(RB—1)/J

F =
32
(R5—r) [ROXCX) R (RE-r) | 7
K /(0 — K)
~ FJ,n—K

F42- distribution

Acceptance Region
| T
0 1 2 3 4

Rejection Region
I

Figure 3.4 Acceptance and rejection regions of an F-test.

(e'e —e'e)/J _ (SSR, — SSRy)/J

= ee/(n— K) SSRu/(n — K)
Wald Test:
W g BB EXX)RINRE 1) 4,

Summary of test statistics:

Z =t — Z(whenn — o)
Z=x2=F=W — x2(whenn — o)
F =t?

Applications

« Case 1: Testing for Joint Significance of Explanatory Variables



« Case 2: Testing for Omitted Variables

Examples: Granger Causality; Chow test
» Case 3: Testing for Linear Restrictions

GLS Estimation
Relax Ass 5 (no conditional heteroskedasticity and auto-correlation)
g|X ~ N(0,0%V)

It allows for conditional heteroskedasticity of known form ¢?V = ¢2V(X). This is a
strong assumption(V is often an unknown form), so GLS is not widely used in reality as
OLS. Since Ass 5 is obeyed. T and F are useless.

Unbiasedness:

E(BX) = Band E(f) = B

Variance:
var(B|X) = o(X'X) I X'VX(X'X) 14 o}(X'X) !

Normal Distribution:

(B—B)|X ~ N0, X'X) ' X'VX(X'X) ™).

Non-Zero Correlation Between 3 and e:

cov(B,e]X) # 0.
Cholesky's Decomposition:
vl=cC'C,
vV=cCclc)?
Consider the original linear regression model, if we multiply the equation by C, we

obtain the transformed regression model:

CY = (CX)B+CeorY*=X*B+¢*
GLS estimator:

B* _ (X*IX*) 71X*ly*
= (X'c’'cxX) (X'C'Ccy)
= X'V IIX)'X'vly

var(e*) = var(Ce) = C'var(e)C = C'Co*V = V 16V = ¢?



Solutions:

(1) Approach I: Adaptive Feasible GLS Estimation

(2) Approach Il: White and HAC Variance-Covariance Matrix Estimation

White's (1980): heteroskedasticity consistent variance-covariance matrix estimator

Andrews (1991) and Newey and West (1987, 1994): Heteroskedasticity and
Autocorrelation Consistent (HAC) variance-covariance matrix estimation



Assumptions
Ass 2.1: Linearity
Yi = 33;5 + &

Ass 2.2: Ergodic Stationarity (for {yi, z;})
Ass 2.3: Orthogonality

E(g:) = E(ze:) =0

Ass 2.4: Rank condition
E(z;x;) =) is full rank(non-singular).
Ass 2.5: g; is a m.d.s with finite second moments

g; ~m.d.s

E(g;9;) is nonsingular.

Consistency of OLS

Under Ass 2.1-2.4:

Proof:

using Ass 2.1.

-1
1 n , 1 n
By Weak Law of Large Numbers(WLLN):
1 n
e

using Ass 2.4, %" is invertible.



1 n
- iné‘i ﬂ) E[.’Ezé‘l] =0
n =

using Ass 2.3.

By Lemma 2.3(Continuous Mapping Theorem):
1 & 1 &
=N wizl =) wiei 0 0=0
[ N

hence:

Asymptotic normality of OLS

Under Ass 2.1-2.5:

Vab—B) S N (0, B E(gig)) 550

Proof:

1 & - 1<
let:

Siz = i z": wzm;

"=
g= % 2 Ti€i = %;gz
so that:
Vb —B) =8, -Vng

By WLLN:

By Ass2.5 + Central Limit Theorem(CLT):

Vng= L igi % N(0, E(gig)))

VA=

using Ass 2.4:



d
Vvng— N(0, E(g:g;))
By Slutsky theorem(Lemma 2.4):
Valb— B) = 8,0 Vg 5 5,1 N0, B(gig))

hence:

Vb - B) 5 N (0, T,0E(gig)) S50

Asymptotic variance estimator

e; = &; —m;(b—ﬂ)

n
i=1

e For the first term in RHS:

using Ass 2.2 + WLLN.

o For the second term:

i=1
using Ass 2.3 + WLLN.
b— B2 0 (consistency)
so (b—B) - L0 miei 0
« For the third term:

% Z_Zl ;T 2, E(z;z)) =2,
andb—8%0
S0 (b—pB) - (5 Xiiwiai) - (b—B) =0
such that:

1 n
plim—Ze? =
ni=a

1¢n , 1., 1 1
— 2 _ 2 _9(b— B) . — e _B8Y.| = !
- e; - ;ez (b—p) - ;mzsl +(b—p) (n szm



hence:

2.5% S
S = E(gi9;) = E(zie€i%;)
By the law of iterated expectation(llE) and under conditional homoskedasticity:
S = E(E(zicicix)|x;) = E(xix,E(eicl|x;)) = o* E(zixh)

then: S % S

3. Avar(b) & Avar(b)

—_—

Avar(b) = S;;S’Sx_wl LN E;jE(gig;)E;xI = Avar(b)

Hypothesis testing

Testing linear hypotheses

the same as chap1, see case 1 below.
Testing non-linear hypotheses
Hy : h(bors) =0

Use the delta method: H(b) = 82—1(),1’)

W = n - h(bos)'[H(bors)Avar(bors)H (bors)'] _lh(bOLS)i>X2(p)

p is the number of constraint conditions.
Detail of Wald test will be discussed in chap3.



Summary of Yongmiao Hong's book(chap4):

(1)Bﬁ>ﬂasn—>oo

(2)\/7_1(5— B) 5 NO,Q 'VQ Y asn — x
where Q@ = E(X; X)),V = B(X:X/e?)
(3)if B(f|Xi) =0*, V=0°Q, Q'VQ ' =5’Q""

iy 1 . ! D
1 Q =— X; X,
Q:Q=72. %X 5@
~ 1 &
V:v=2Y X x4V
~ ; Xle? &
QL Qv
Case I: Conditional Homoskedasticity
J =1

RB—r

= < N(0,1)
- /SRX'X) R ’

J>1:

W= (Rf—r)[s*R(X'X)'R| RE—r)=J F53
Case ll: Conditional Heteroskedasticity
J=1:

__VBE-r) N(0,1)
VRG-1VO1R!

T,

J > 1:

W, = n(RB — )’ (RQ‘IVQ_IR’)_I(RB PSR



MLE Basics

normal distribution:

Bl = L L =p)®
f(yzlmzaﬂaa' ) = \/_exp 5
the loglikelihood function:
) N N 1N (y; — m’ﬁ)
log L(B,0°) = ——log(27r) - —log -5 Z
the score vector:

Olog L(6 8logL N
5(6) = T() _ Z =3 si(0)
i=1 =1

dlog L;(B,0%) (yi—ziB) /ﬁ)
S; (/87 o ) 8IOgLi(,3,G'2) + 1 (yl )2
— do2 202 cr4

R N 1N 1 &
B = (Z wlac;) Zwiyi and &% = Z — ziB)?
' i=1

i=1

FOC implies:

Information matrix:

calculation:
Ui
E(Sisé) = E| [17 2 | [—éwi, D) 14]
-+ o 20 20

20 20
W 2 UL u ST

(0_5$Z) 501 T g0

=F

3 2 2
u; xl 1 Uy
R + 20‘6 (_ 202 + 20 )

since E(u;) = 0, E(u?) = ¢?, E(u}) = 0, E(u}) = 30*, we can finally get



The asymptotic covariance matrix:

V= I(/B 0_2)—1 — <0-22w_a:1 0 )

VN(B—B) = N(0,0°%;})

VN(6? — 0%) = N(0,20%)

Hypothesis test

A

In L(BU}
In L(ﬁk}

=y

0 | BR:ﬂo 3!..-’
El 6.6 Z=EFiESM G ITHRE

LR(Likelihood Ratio Test)

_n n _9 1 _,_
logL = —Elog(2ﬂ') — Elog(a ) — prrik
e SSR

SSR = u’u, 52 = T

SSR
n

= logL = —%log(27r) — %log — %

2 n . n
_“)*3 e % .(SSR) *

n

= L=

SSRy
SSRr
(SSRR—SSRU)/#T‘ n—k—1 2

F = = o |
SSRU/TL—k— 1 #1" ()\ )

A= Ly/Lg=( )~"/2

Wald Test

We have already seen in chap 2:



W= (RB—r) [SZR(X'X)AR/] _1(RB —r) i X7

_ d
W =n-h(bors)' [H(bors)Avar(bors)H(bors)'] "h(bors) =X (p)
For nonlinear hypotheses:
Ho: h(6) =0

By first-order Taylor expansion:

Wald Test Statistic:

A

W = n - h(0)[H Avar(§)H') h(d)
@"(é) can be the inverse of information matrix.

Wald Test Examples(see lecture note):
(1) Tests of Exclusion Restrictions

(2) Tests of Statistical Significance
(3)Tests of Nonlinear Restriction

Examples
Verbeek 6.1.1+6.2.3:

(1)

log L;(p) = y;logp + (1 — y;)log(1 — p)
OlogLi(p) _yi 1-—uy

Op p 1-p



0%logLi(p) i 1—y
o> p2  (1—p)?

0%logLi(p) \ _ E{vi} | 1-E{ui}
I:E{_ Op? }_ P2 (1-p?

note that E{y;} =p

(1-p)

0.44(1 — 0.44)

P+ za2 —0.44 + 1.96\/

100

(5)Hy : p = po for a given value p,
Wald test :

1 1

— + —

1-p p(1-p)

= (0.3427,0.5373)

W = N(p—po)[p(1 — p)] ' (b — po)

For LR test we need to compare the unrestricted and the restricted model:

log L(p) = N1log(N1/N) + (N — Ni)log(l — N1/N)

log L(p) = N1log(po) + (N — N1)log(1 — po)

LR = 2(log L(p) — log L(p))

Verbeek Exercise 6.2:

a.
N —ebrtBari B4 Box, Yi
e e
L(B1, ) =[] -
i=1 Yi:
N
log L(B1, B2) = Z (=P i (81 + Bawm;) — log(ys!)]
i—1
b.

dlogL & Lo
o8 :Z(yi—€ﬁ1+ﬁzml)22(yi—)\i)

9B i=1 i=1
Olog L N
— . oPitBeTi) . —
7. > (yi—e Jzi=)

Zfil(?/z - )
s(B) =
g (Z£1(yi—>\i)$i>

=)




given Ely;|z;] = Ai:
Elyi — Ailz] =0
El(y: — Xi)zilzi] = ziBlyi — Aifzi] =0
Elsi(B)|z:] = Elsi(8)] =0

0%log L N 0%log L N 0%log L N
3_ﬁ§ = i:1(_>‘i): 3_/5§ = 1’:1(_>‘i 22): W@gﬁz = i—1(_>‘iwi)
H() = — PORY Z)\iiﬂi)

I(B) = —E[H(B)] = < S, ZE[AM) B < 3¢ ZAimi>

Y. ENiz;] > E[\x?] Yoy Y Aad

the asymptotic covariance matrix: Var(g8) = I(5) "
consistent estimator: Var(8) = I(8), A = exp(B1 + Baw;)



Assumptions

Ass 3.1: Linearity
yi = 2.0 + €
Ass 3.2: Ergodic Stationarity (for w; = {y;, zi, zi})
Ass 3.3: Orthogonality
E(g;) = E(ziei) =0

Ass 3.4: Rank condition
E(z;z;) - is full rank, Rank(}_ ) =L
when K=L, 3>~ exisits.

Ass 3.5: g; is a m.d.s with finite second moments
gi ~m.d.s
E(g;9;) is nonsingular.

Ass 3.6: finite fourth moments
E[(z2;)? exists and finite.

Ass 3.7: Conditional Homoskedasticity

2SLS
Z=Xr+v
first stage:
Z=X(X'X)"'X'Z=PZ
second stage:
oy =(2'2)1 2"y
By WLLN, CLT and some lemmas(see GMM):
Siv 58

CAN: Consistent and Asymptotically Normal



GMM Basics

yi = 2.0 + €
E(g;) = E(z;e;) = E(z;(y; — 225)) =0

gn(S): %sz _Z(S Zmzyz ZZBZ(S—Smy zz(s

GMM estimator:

6(W) = argmin n g,,(8)'Wg,(é) = argmin n(Sgy — Swzg)'W(swy ~ S,.0)
5 5

FOC:

S(W) = (SL.WS,.) 'S, Wy

sample error:

§W) — 6= (S1.WSa.) 'S5 Wsyy — (SLWS,.) ' (SL.WS,.)8 = (SL.WS,..) LS. Wg
base on
Sgy = — szzcs—kal = Za:z5+ insi:sz5+§
i=1
Assumptions

the same as chap4

Proposition 3.1 Asymptotic distribution of GMM estimator
Consistency
Under Ass 3.1-3.4:
p Jim o) = ¢
Proof:

Ass 3.2,3.4>5,, 5 %,,, %, is column full rank(K > L)

ASS3233=>g_1 "1gl—>0



W 2, W by the definition of W(symmetric and positive definite weight matrix)
By Slutsky theorem:
e WSe. 7 T, WE,,
S Wgt 2 W.0=0
hence:
W) -6 (2. w=e,,) - 0=0

plim§(W) = &

Asymptotic normality

Under Ass 3.5:

A~

VR (5(W) - 8) % N(0, Avar(

~ A

(W)))
Avar(3(W)) = (SL,WE,.) B WSWE,. (3, WE,.)
S = Elgig}] = Elzzie}]
proof:
Vr(3(W) = 8) = (S5, WS,.) 'S, W -/ng
By CLT:
VgL N(0,S)
By Slutsky theorem:
S WSs B 2L WSy,
SwWhs w
hence:
Va(3W) = 6) & (BL.WS,.) 'SLW - N(0, S)

Avar(§(W)) = (B, WS,.) =, WSWE,, (S, WS,.)

Consistent estimate of Avar(6(W))

—_—

Avar(5(W)) & Avar(3(W))



Proof:

Rvar(3(W)) = (S, WS..) S, WSWS,.(S,.WS,.)
Sz 5 Beey, WHW, 8§45

—_—

Avar(3(W)) & (SLWE,,) 'S WSWS,, (S, WE,.)

Proposition 3.2 consistent estimation of error variance

Under Ass 3.1-3.2 + E(z;z}) exists and is finite:

1 n
—Y & 5 E(ed)
n <
=1
Proof:

~

e =2 —2(6—8) ziei + (6 — 8) 2:24(5 — 9)
1 & -

n w2260 (%Z) +(G-ay (%E;Ziz;)(s_a)

7 =1

« For the first term in RHS, using Ass 3.2 + WLLN: 1 °¢2 % B(e2)

- For the second term, 6 — & — 0 (consistency), % > ziE; LN E(z;e;) exists and is finite
(by Cauchy-Schwartz inequality)

« For the third term, 6 — 6 — 0, 13" z2] & E(2;2}) exists and is finite

hence:

The Efficient GMM Estimator

To minimize Avar(5(W)), choose S~ as the weighting matrix.

~ A

Avar(d(W)) = (2. WX,,) '8, WSWE, (., WE,,)

Avar(8(S71)) = (21,8 '8,.,)

—_—

Avar(6(S71)) = (S..5718,.)



From GMM to 2SLS

Under Ass 3.7(conditional homoskedasticity):
S = E(%w;e?) = E[xzfiE(eﬂivz)] = UzE(xﬂé)

as is proofed in chap2:

s2 % 02, Spp B E(ziz}) = Zuz, shs
Bom = (85,57 52:) 71 8,.5 sy

= (S,. 25’;7:::: lsm) 1Sglcz( 2822) sy

( 22 ) SaIczS;z y

(ZX XX XZ) Z’X(X’X)_IX’y

n n n

n
= (Z2'X ) 'X'Z) Z’X(X’X)—lx’y
= (2 PXPXZ) 'Z' Pyy
=(2'2)7 2"y

= BasLs

don't forget the projection matrix P is symmetric and idempotent.

Proposition 3.3 Robust t ratio and Wald statistics
Under Ass 3.1-3.5:

(@) Underthenull Hy: 6 =6

Vn (S(W) - 5)

- \/ Avar(d

i> N(0,1)

(b) Under thenull Hy: R6 =17

W = n(RS(W) — r)'{R[Avar(5(W))|R'} {(RS(W) — ) —5 x*(#7)
(c) Under the null Hy : a(d) =0

d

W = na(3(W)) {AGB(W))[Avar(3(W))| AGB(W))'} a(8(W)) — x*(#a)
(d) § is from restricted model, § is from unrestricted model:

LR=JG(S™), 8 - J06(5 1,81 % 2



Proposition 3.6 Hansen'’s test of overidentifying restrictions

Under Ass 3.1-3.5:

J(3(571),871) = nga(8(371))'S 9,(5(5 1)) 5 x2(K — L)

Vng % N(0,8),8 % S
Under conditional homoskedasticity, J becomes Sargan Statistic:
n(Szy — S2209515) (52822) " (Szy — Suz025L5)
Proposition 3.7 Testing a subset of orthogonality conditions
Under Ass 3.1-3.5:
C=J-J — x*(K—-K)

need K1 > L



Basic formulars:

GMM estimator:
5(W) = (S, WS..) 'S, W
sample error:
§— 8= (S, W5,.) 'S, Wg

sample moment:

gn(S) = Szy — sz(s

In efficient GMM: 1 = S—1. By the definition, W is a K x K symmetric and positive
definite matrix.

First-order Taylor expansion:

g2(8) ~ gu(3) + 220 | (5
05 13=5

mz(S - 5)

G- S
G- S

the weighted form projection matrix:
P=S8,.(8. WS,.) 'S, W

Rank(P) = L, since S, is full column rank(=L).

9n(8) = (Ix — P)g = Mg, ()
Rank(M) = tr(M) = tr(Ig) —tr(P) = K — L

Conclusion:

J(6,8 ) =n.9'S g = (v/ng)'S ' (vng) ~ x*(K)

JBE),87) = n.ga(3(S 7)) 1gn(8(571) % X*(K — L)
The reason for the loss of degrees of freedom is: When constructing g,,(6), we used &
to replace the true §, which is equivalent to imposing L constraints on the sample
moments (by projecting g onto the column space of S,, through the projection matrix P
), which can also explain why we use the degrees of freedom n — K in OLS estimation.



Assumptions

Ass 4.1: Linearity

[ y1 ] Z, [ &1 ] [ &1 ]
nx1 n x Ly L;x1 nx1
= +
Ym ZM 6M EM
[ X 1] i nx Ly | [Lm X 1] [n X 1]
Ass 4.2: Jointly Ergodic Stationarity
{Wz} = {yil, ey YiMsZily ooy B M, XLy e e ,xZ-M}

Ass 4.3: Orthogonality
We don't assume cross equation orthogonalities.

Ass 4.4: Rank condition
E(ximz,,) is full column rank.

Ass 4.5: g; is a m.d.s with finite second moments

gi~m.d.s
E(gig;) is nonsingular.

Ass 4.6: finite fourth moments
E[(zimk2;,)?] exists and finite.

Ass 4.7: conditional homoskedasticity



MEGMM

1 n
"y Zizl X1 * €i1

1
E=—) 8= = gn(9)
n i=1 1 n
T Daie1 XiM * €iM
population moment:
E[xi - (yin — 2,161)]
E[xiM : (yiM - Z;MSM)]
[ E(xi1 - yi1) | E(xq12;)01
LE(xin - vint) ] | B(xinez )1
[ E(xi1 - Yi) | E(xuz;) ... 0 5,
| E(xin - yinr) | |0 oo E(ximzyy,)| 6u

sample moment:

;] o~

% Z?zl X1+ (Y — Zilal)

~

gn(a) =
1 n IR
= > i1 Xinr - (Yisr — 2,,001)
1 n 1 n IS
D o1 Xl - Yil = Y1 Xi1Z;, 01
1 S X Y 1L \n "5
n 2ui=1XiM " YiM ) Zizl XiMZ;pOM
1 n 1 n ) ~
o 2i—1 Xil " Yi1 T D io1 XilZg 01
1 n . LAy 1 n ’ ~
n i=1 XiM " YiMm - Zi:l XiMZ; 5M
=8, —S;.0
! !
E(eilsilxilxﬂ) oo E(filﬁiMXilxiM)
!
S = E(gig;) =

E(siMsilxiMx;l) .o E(eiMsiMxiMx;M)



Wi Wi .. Wiy
/\, —~ —_~
— 12 W22 e WQM
W =
Wiy Wour o Wi

MEGMM estimator:
5(W) = arg min J (4, W) = arg min ng,(8) Wg,(8)
5 5
= argminn(szy — szg)'W(smy — SMS)
5

FOC:
T - 1o/ 1}
(W) = (S,,WSz.) S, ,Wsay =
- - - -1
i ' ' ’ A~
Szlzlwllsmlzl le,lelZSazzzz oo SmlzlwlMSxMzM SﬂZlZlWlMs-’L'MyM
’ iy ! = ’ z ’ A
SmQZ2W12SiE1Z1 Sz2z2W228w2Z2 ce Sm2z2W2MSwMzM SZE2Z2W2MSCL'M:I./M
X
fa gy ! ~
SiEMZMWMMsmMyM

! fayu ) ! ! 2
S WinSeizr Sayey WorrSerz Sz W MMS ey

TMZM

SEGMM versus MEGMM
SEGMM is a special case of MEGMM when:
W = diag(wu, “e ,WMM)

Efficient MEGMM is equivalent to Efficient SEGMM when:

1. Each equation is just identified.
2. At least one equation is over-identified but S is block diagonal.

Elgimgy,] = Eleimein Timzy] =0 forallm # h



Mulitiple-Equation GMM
§1(W)

8 m(W)

[~ n
1 7
;E:mﬂn
i=1

r n
1 ’
- Zi1X;
n <

i=1

-

()
(;X;Zilxﬁl)wll
=

1 e
(— ZZMX“)WM
n i=1

1 n
!
;E:EMﬁM
i=1 .
n
IS vz
. xllzil
i=1

W -

“Wuym

1 ¢ ~ 1<

(; Zzuxﬁ)ww(; ZXiMZ;M)
i=1 i=l1

( Z:LM&M)“MH( E:XALJ ( z:LM&M)

(%inl)’,{l) +.- 4 ( Zzllx,l) |
i=1

1 < P
(;ZzingM)le(;inlYi1)+"‘+( ZLMX,M)
| "o i=1

o] n
_E Xi1 - Yi1
nx

i=1

267

1 n
XiMZ

; iMZ;p

=1 _

-

1 n

= inM “YiM
g
L = -

- -1

ol Sonet)
ol Sovt)

( E:mM%M)

(426)

To go from the second-to-last to the last line, use formulas (A.6) and (A.7) of
the appendix on partitioned matrices. If you find the operation too much, just set

M =2
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Table 4.1: Multiple-Equation GMM in the Single-Equation Format

Sample Analogue of

Orthogonality Conditions:
GMM Estimator:

Its Sampling Error:

Asymptotic Variance of

Optimal GMM:

Its Estimator:

J Statistic:

—

Avar3(S1)) = (=S
Avar(8(S—1)) = (S8,
JESE™H, S =n 06 )8 18,08

B (S) = Sxy — szS =0
§(W) = (S, WS,,)"'S,, Ws,,
(W) — 8 = (S,,WS,,) 'S, Wg

—lzxz)—-l

18w

Single-Equation GMM
applied to the Multiple-Equation GMM
equation in question
8 X; - & (414)
5 s 4.1.6)
1 n
Sxy =Y %y 4.2.2)
nliz,l.
Syz - Zl X7, (42.2)
Size of W K xK Y Kmxd Kn
Yz E(xiz}) 4.1.9)
S (= Avar(g)) E(e?x;X}) (4.1.11)
- 1<
S - > ek (43.2)
i=1
Estimator consistent
under which 3.1-34 4.1-4.4
assumptions?
Estimator asymptotic
normal under which 3.1-3.5 4.1-45

assumptions?

S —p S under

which assumptions?

3.1, 3.2, 3.6, E(g;g;) finite

4.1,4.2,4.6, E(g:g;) finite

df.of J

K-L

Zm(Km - Lm)




Special Cases of MEGMM: FIVE, 3SLS and SUR

efficient equation-by-equation GMM| | efficient multiple-equation GMM

conditional homoskedasticity — -U ~Ur

equation-by-equation 25LS FIVE

SUR assumption (4.5.18),
i.e., endogenous regressors U U
satisfy “cross” orthogonalities

equation-by-equation OLS SUR

Figure 4.1: OLS and GMM

Full-Information Instrumental Variables Efficient (FIVE)
Under Ass 4.1-4.5 and 4.7,
E(eimé€in|Xim, Xih) = Omh
UllE(xilx;l) U1ME(Xi1X;M)
S = ElximX;imein] = omnB[XimX;) =
o B(xirxyy) .. oumB(XinX;y)
52, 5 02 (E(zim2y,) exists and finite), 2 Y zimal, & BE(zimzl,), S = 8
Large-Sample properties:
1. 8pve = 6(S1) is consistent, asymptotically normal, and efficient with Avar(5(S1)).
Avar(dprve) = (2,8 ' 8..)

2. @(SFIVE) is consistent for Avar(épvp):

—_—

Avar(6prve) = (85,8 1 Sa:) !

3. Sargan’s Statistic:

JGrve,S™) =n-9.(0r1vE)' S 90 (6r1ve) = X2(Z(Km — L))



Three-Stage Least Squares (3SLS)

Under Ass 4.1-4.5 and 4.7 + same instruments for all equations:
Xil =X 2= ... =Xim = X4

moment conditions:

Xi€i1 €i1
g = =€g;®x;, with ;=
XiEiM EiM
Efficient Weight matrix:
[ JllE[xix;] Ule[Xix;] e JlME[XlX;] i
Ule[Xix;] ang[xix;] e O'QME[XiX;] ,
SasLs = _ _ _ . =X Q Elxx,]
_JlME[xix;] agME[xix;] . JMME[xix;]_
011 012 . O1M
012 022 cee O2M

with X = Ele;e;] =

O\M O2M ... OMM

Wi
Il
I
S|+
S)>
m,

&Ml oo OMM
Large-Sample properties:

1. 83515 is consistent, asymptotically normal, and efficient with Avar(ggng).

2. Avar(3s515) is consistent for Avar(8ssz.s).

3. Sargan’s Statistic:

~ . ~ . ~ d
J (3518, S7") = n - gn(d3s15)'S " gn(d3515) = X* (MK — Y L)

m

Seemingly Unrelated Regression (SUR)

Under Ass 4.1-4.5 and 4.7 + same instruments for all equations + the predetermined
regressors satisfy "cross" orthogonalities: E[z;nein] = 0 (without endogeneity)

Efficient Weight Matrix:



i allE[ziz;] ale[ziz;] e alME[ziz;] |
UlgE[Ziz;] 022E[ziz;] . O'QME[ZiZ;] ,
Ssur = _ . _ . = XY ® Elz,z,]
_alME[z,-z;] O'QME[ZZ'Z;] e UMME[ziz;]_

Large-Sample properties:

1. dsur is consistent, asymptotically normal, and efficient with Avar(SSUR).

2. @(SSUR) is consistent for Avar(dsur)-
3. Sargan’s Statistic:

- . . . - d
J(bsur, S™) = n - gn(bsur)'S ' gn(dsur) = X* (MK — ) L)

m

SUR versus OLS
the same as SEGMM versus MEGMM:

1. Each equation is just identified.
2. At least one equation is over-identified. Need assumption that

omnB(ziz}) = 0 for allm # h



Table 4.2: Relationship between Multiple-Equation Estimators

Multiple- FIVE 3SLS SUR Multivariate
o equation GMM regression
A i -4, jons 4.1-4. A jons 4.1-4.5,
. Assumptions 4.1-4.5, ssumpt10n§4 1-4.5, Assumptlon's 1-4.5, ssumpt10n§ 1-4.5
Assumptions . Assumption 4.7 Assumption 4.7 Assumption 4.7
The model Assumption 4.7 p .
4.1-4.6 , ) E(Zimz;;,) finite Xim = X; forall m Xim = X; forall m
E(zimz;;,) finite ! .
! X;m = X; for allm X; = union of zj1, ..., Zim Zim = X; forall m
S (= Avar(g)) 4.1.11) “4.5.2) X @ E(x;x)) T ® E(xix;.) irrelevant
o~ ¥ -ly . v.y/ ¥ ~1y.v.x
3 4.32) (4.5.3) _ 2@ (LX) _Z® T Exix) irrelevant
¥ from 2SLS residuals ¥ from OLS residuals
3(§_1) no simplification no simplification ) (4.5.12) ‘ 4.5.12) equation-by-equation
with (4.5.13), (4.5.14) with (4.5.13'), (4.5.14) OLS
Avar3S1)) (4.3.3) (43.3) @5.15) (@.5.15) OLS formula
| with (4.5.16) with (4.5.16")
Avar3S1)) (4.3.4) (4.3.4) @.5.17) (4.5.17) OLS formula
| with (4.5.13) with (4.5.13)

L



Keen
Rectangle


Three-Stage Least Squares (3SLS)

Three-Stage Least Squares is a systems estimation method for simultaneous
equation models. Unlike single-equation methods like 2SLS, it estimates all equations
simultaneously, improving efficiency when error terms across equations are

correlated.
2SLS vs. 3SLS
2SLS 3SLS
Estimation Equation-by-equation All equations
Information Used Within-equation information Full system
only information
Cross-equation Error Ignored Considered
Correlations
Efficiency Lower Higher

If error terms across equations are uncorrelated, 3SLS reduces to 2SLS. In practice,
economic relationships often create correlated errors due to omitted variables, making
3SLS more efficient.

Estimation

Prerequisites

1. No autocorrelation within each equation's error term.
2. Contemporaneous correlation between error terms of different equations.
3. The system must be overidentified (verified via order and rank conditions).

Model Setup
Yim = Z;m5 + €im

y=Yv+XB)+e=Z5+¢



Stage 1 (Same as 2SLS)

reduced form:

Z=Xr+wv
Stage 2 (Same as 2SLS)
structural model:

Y= Z5+u
Stage 3

1. Estimate the cross-equation covariance matrix X using residuals from Stage 2:

Al A

. U;Uj
aij =
n
- ~2 -~ -~ 7
04 012 ** Oim
~ /\2 ~
. 021 09 02m
3y =
~ ~ ~92
[ Oml Om2 O |

. Apply Generalized Least Squares (GLS) to the entire system. The 3SLS
estimator is:

~ ~ ~ ~1—1 4 N
R [Z’ (2*1 ® I) Z] A (2*1 ® I)y

Reference:

e 3SLS: Three-Stage Least Squares - SPUR ECONOMICS
o MRERBRE. BRITELZFF A StataL A.E 20K &S B Hhkit.2014



https://spureconomics.com/3sls-three-stage-least-squares/

Binary choice model

Logit & Probit model

o) = —=e

Coefficient estimates and standard errors in the logit model are roughly 7/v/3 = 1.8
bigger than in the probit model.

Odds ratio= %

Latent variable

y! is unobserved, it is referred to as a latent variable.

y,-* = x:ﬁ +¢&;. (7.8)
=1 ify >0 (7.10)
=0 ify* <0,

Ply, =1} =P{y/ >0} =P{x/f+¢ >0} = P{—¢, <x/B}=Fx;), (1.9

1 — 1
Estimation:

N
L(B) =[] Ply: = 1x;: BY Ply, = Olx;s BY 7, (7.11)
i=1

N N
log L(B) =)y log F(x{) + > (1 —y)log(l — F(xB)). (7.12)

i=1 i=1

dlogL(B) i { y; — F(x/B)

— ! =0, 7.13
9B Fapd—Fap) P )} ti 713

i=1

Goodness-of-fit:

Goodness-of-fit measures are based on comparison with a model that contains only a
constant as explanatory variable. Let logL1 denote the maximum loglikelihood value of
the model of interest and let logLO denote the maximum value of the loglikelihood
function when all parameters, except the intercept, are set to zero. Clearly, logL1 =



logLO. The larger the difference between the two loglikelihood values, the more the

extended model adds to the very restrictive model.
1

pseudoR* =1 — ,
1. 14+20ogL, —logL,)/N
2 McFaddenR* = 1 —log L,/ log Ly,
Table 7.1 Cross-tabulation of actual and predicted
outcomes
Yi
0 1 Total
Yi 0 Moo Mo Ny
1 o " N,
Total ng n N
p=Ny/N.
the proportion of incorrect predictions:
ng; +n
wr| = 01 10,
N

=p if p<0.5
3.

2 _ wry

RE=1-—L

(7.17)

(7.18)

(7.21)



lllustration: the Impact of Unemployment Benefits on Recipiency

Table 7.2 Binary choice models for applying for unemployment benefits (blue collar workers)

LPM Logit Probit
Variable Estimate s.e. Estimate s.e. Estimate s.e.
constant —0.077 (0.122) —2.800 (0.604) —1.700 (0.363)
replacement rate 0.629 (0.384) 3.068 (1.868) 1.863 (1.127)
replacement rate* —1.019 (0.481) —4.891 (2.334) —2.980 (1.411)
age 0.0157 (0.0047) 0.068 (0.024) 0.042 (0.014)
age’/10 —0.0015 (0.0006)  —0.0060 (0.0030) —0.0038 (0.0018)
tenure 0.0057 (0.0012) 0.0312 (0.0066) 0.0177 (0.0038)
slack work 0.128 (0.014) 0.625 (0.071) 0.375 (0.042)
abolished position —0.0065 (0.0248) —0.0362 (0.1178) —0.0223 (0.0718)
seasonal work 0.058 (0.036) 0.271 (0.171) 0.161 (0.104)
head of household —0.044 (0.017) —0.211 (0.081) —0.125 (0.049)
married 0.049 (0.016) 0.242 (0.079) 0.145 (0.048)
children —0.031 (0.017) —0.158 (0.086) —0.097 (0.052)
young children 0.043 (0.020) 0.206 (0.097) 0.124 (0.059)
live in SMSA —0.035 (0.014) —0.170 (0.070) —0.100 (0.042)
non-white 0.017 (0.019) 0.074 (0.093) 0.052 (0.056)
year of displacement  —0.013 (0.008) —0.064 (0.015) —0.038 (0.009)
> 12 years of school —0.014 (0.016) —0.065 (0.082) —0.042 (0.050)
male —0.036 (0.018) —0.180 (0.088) —0.107 (0.053)
state max. benefits 0.0012 (0.0002) 0.0060 (0.0010) 0.0036 (0.0006)
state unempl. rate 0.018 (0.003) 0.096 (0.016) 0.057 (0.009)
Loglikelihood —2873.197 —2874.071
Pseudo R> 0.066 0.066
McFadden R? 0.057 0.057
Rf, 0.035 0.046 0.045

The replacement rate, defined as the ratio of weekly Ul(unemployment insurance)
benefits to previous weekly earnings.

The LPM is estimated by OLS, the logit and probit model are both estimated by
maximum likelihood. The estimates of B obtained from the logit model are roughly a
factor n/v3 larger than those obtained from the probit model.

The replacement rate has an insignificant positive coefficient, while its square is
significantly negative. For the probit model, we can derive that the estimated marginal
effect of a change in the replacement rate (rr) equals the value of the normal density
function multiplied by 1.863 - 2 x 2.980rr.

The dummy variable which indicates whether the job was lost because of slack work is
highly significant in all specifications, which is not surprising given that these workers
typically will find it hard to get a new job.

The higher the state unemployment rate and the higher the maximum benefit level, the
more likely it is that individuals apply for benefits.



The ceteris paribus effect of being married is estimated to be positive, while,
somewhat surprisingly, being head of the household has a negative effect on the
probability of take-up.

Table 7.3 Cross-tabulation of actual and predicted
outcomes (logit model)

Y
0 1 Total
¥ 0 242 1300 1542
1 171 3164 3335
Total 413 4464 4877
) 171 + 1300
p 1542
p= 3335/4877
3335 1542
logL, = I 15421 = —3046.187,
og L, = 33351og 1577 + 1542 1og 1877 3046.18

which allows us to compute the pseudo and McFadden R2 measures.
Poo + P11 =
242 3164

— 4+ —=1.1
1542 " 3335 06,
Multi-response Models
Ordered Response Models
Vi =xiB+e (7.28)
yi=J ity i<y <y (7.29)
yi =xiB+e (7.30)
y =1 if yf <0,
=2 if0<y <y, (7.31)
=3 ify' >y,

Assuming that €i is i.i.d. standard normal results in the ordered probit model. The
logistic distribution gives the ordered logit model. For M = 2 we are back at the binary
choice model.

Ply; = 1lx;} = P{y; < Olx;} = @(—x{B),
Pl =3Ix} = PO} > vIx} =1 -0 —x/)

and
Ply, =2|x;} = ®(y — x;B) — ®(—x/P),



Normalization:

Ply;=llx;} = P{B +x;B+& <yx}=2 (%%ﬂl —x; (5)) ;
lllustration: Willingness to Pay for Natural Areas

Table 7.4 Ordered probit model for willingness to pay

I: intercept only II: with characteristics
Variable Estimate s.c. Estimate s.e.
constant 18.74 (2.77) 30.55 (8.59)
age class - —6.93 (1.64)
female - —5.88 (5.07)
income class - 4.86 (1.87)
o 38.61 (2.11) 36.47 (1.89)
Loglikelihood —409.00 —391.25
Normality test (Xzz) 6.326 (p = 0.042) 2.419 (p =0.298)

Multinomial Models
P{y, = j} = P{U;; = max{U,, ..., Uy ll
=P {'““ij +é&;; > kzlr.r}a}(k#j{uik + gik}} . (7.35)

we assume that all €ij are mutually independent with a so-called log Weibull
distribution (also known as a Type | extreme value distribution).

F (1) = exp{—e™'}, (7.36)

expliy )
exp{l"n} + eXp{le-z} 4 eXp{pLiM} .

Ply = j} = (7.37)

multinomial logit model:
exp{x;; B}
L+ explx/,B} + - +explx/, B}

Ply, = j} = j=12 ... M. (7.38)

independence of irrelevant alternatives (l1A)

The probability ratio (or odds ratio) is given by:




Models for Count Data

Poisson regression model

exp{—, }A)

Ply; = ylx} = ,
y.

estimation:

N
log L(B) = Z[ % + v loga; — log y,!]

N
Z[ exp{x/B} + y; (x/) — log y; 1.

equidispersion:
V{y;lx;} = exp{x;B}.

overdispersion:
Viylx) = E(ellx;} > explx/B)

NegBin | model:
Vi) = (1+ 8% exp{x/p)

NegBin Il model:

V{ylx;} = (1 + o® exp{x]B}) exp{xB},

y=0,1,2,...,

(7.42)

(7.44)

(7.43)

(7.49)

(7.50)



lllustration: Patents and R&D Expenditures

Table 7.5 Estimation results Poisson model, MLE and QMLE

MLE QMLE
Estimate Standard error Robust s.e.

constant —0.8737 0.0659 0.7429
log (R&D) 0.8545 0.0084 0.0937
aerospace —1.4218 0.0956 0.3802
chemistry 0.6363 0.0255 0.2254
computers 0.5953 0.0233 0.3008
machines 0.6890 0.0383 0.4147
vehicles —1.5297 0.0419 0.2807
Japan 0.2222 0.0275 0.3528
USA —0.2995 0.0253 0.2736
Loglikelihood —4950.789
Pseudo R? 0.675

LR test (Xg)
Wald test ( x{f)

20587.54 (p = 0.000)

338.9 (p = 0.000)

Table 7.6

Estimation results NegBin I and NegBin II model, MLE

NegBin I (MLE)

NegBin II (MLE)

Estimate Standard error Estimate Standard error

constant 0.6899 0.5069 —0.3246 0.4982
log (R&D) 0.5784 0.0676 0.8315 0.0766
aerospace —0.7865 0.3368 —1.4975 0.3772
chemistry 0.7333 0.1852 0.4886 0.2568
computers 0.1450 0.2063 —0.1736 0.2988
machines 0.1559 0.2550 0.0593 0.2793
vehicles —0.8176 0.2686 —1.5306 0.3739
Japan 0.4005 0.2573 0.2522 0.4264
USA 0.1588 0.1984 —0.5905 0.2788
82 95.2437 140069 o>  1.3009 0.1375
Loglikelihood —848.195 —819.596
Pseudo R? 0.944 0.946

LR test (xg)

88.55 (p = 0.000)

145.75 (p = 0.000)




The Standard Tobit Model

censored regression model

Yi=xB+e, i=12...N,
=y ify >0 (7.60)

P{y, =0} = P{y; <0} = P{e; < —x]B}
:P{is—ﬁ}=®(—ﬁ)=1—®(x;ﬂ). (7.61)
(o2 g o2 (el

PO =0 piprone. (7.63)
0x;,

P(xiB/o)

E{y;ly; > 0} =x/B + E{g;le;, > —x/B} =x;B+ 0o S Bjo)

(7.62)

Efy;} = x{B@(xip/o) +o¢(x/B/o). (7.64)

0E{y;}

3 = B P(x/B/0). (7.65)
Xik

The conditional expectaction of y (for y>0):

E(yly > 0,x) = x8+ E(u|u > —xp)
= xf + oE[(u/0)|(u/a) > —xB/0]
= xB+op(xB/0)/®(xB/0)
= xp + oA(xB/o)

A\ is called the inverse Mill's ratio.

The unconditional expectaction of y (for all y):

E(y|x) = P(y > 0[x) - E(yly > 0,x) + P(y = 0[x) - 0
=P(y > 0|x) - E(y|y > 0,x)
= ®(xB/0) - E(yly > 0,x%)
= ®(xB/0)[xB + oA(xB/0)]
= ®(xB/0)xB + op(xB/0)

Estimation
logL;(B,0%) =) log Ply, =0} + Y [log f(y,ly; > 0) +log P{y, > 0}]

iEI() iEIl

=) log P{y; =0} + ) log f(3,), (7.67)

iEI() iEIl



log L,(8,0%) =Y log [1 _® (xj)]

i€l

1 1 (v, — x/B)?
+Zlog|:mexp{—§(y’a+ﬂ)}j|. (7.68)

iel

truncated regression model

y,‘*zxi/,B+8i, i=1,2,..., N, (7.69)
Y =yf ify;k >0
(y;, x;) not observed if y* < 0,
Estimation:

logLy(8,0%) = Y log f(y;ly; > 0) = > llog f(y;) —log P{y; > 0}],  (7.70)

ieh i€l

! Loi-apr)] q)(g)
2jmvzexp 3 g og - .

(7.71)

log L, (B, 02) = Z {log |:

i€l

lllustration: Expenditures on Alcohol and Tobacco (Part 1)

Table 7.7 Tobit models for budget shares alcohol and tobacco

Alcoholic beverages Tobacco
Variable Estimate s.e. Estimate s.e.
constant —0.1592 (0.0438) 0.5900 (0.0934)
age class 0.0135 (0.0109) —0.1259 (0.0242)
nadults 0.0292 (0.0169) 0.0154 (0.0380)
nkids > 2 —0.0026 (0.0006) 0.0043 (0.0013)
nkids < 2 —0.0039 (0.0024) —0.0100 (0.0055)
log(x) 0.0127 (0.0032) —0.0444 (0.0069)
age x log(x) —0.0008 (0.0088) 0.0088 (0.0018)
nadults x log(x) —0.0022 (0.0012) —0.0006 (0.0028)
o 0.0244 (0.0004) 0.0480 (0.0012)
Loglikelihood 4755.371 758.701
Wald test (X—?) 117.86 (p = 0.000) 170.18 (p = 0.000)

For tabacco, age is an important factor in explaining the budget share. For alcoholic
beverages, the number of children and total expenditures are individually significant.

Wald tests for the hypothesis that "all coefficients, except the intercept term, are equal
to zero", produce highly significant values for both goods.



The Tobit Il Model

The traditional model to describe sample selection problems is the tobit II model,®

also referred to as the sample selection model. In this context, it consists of a linear
wage equation
w = x); B + ey, (7.80)

where x,; denotes a vector of exogenous characteristics (age, education, gender, . ..)
and w’ denotes person i’s wage. The wage w is not observed for people that are
not working (which explains the *). To describe whether a person is working or not a
second equation is specified, which is of the binary choice type. That is,

hi = x3By + &, (7.81)
where we have the following observation rule:

w,=w/ h;=1 if hi >0 (7.82)
w; not observed, h; =0 if h] <0, (7.83)

The conditional expected wage, given that a person is working, is given by

E{w;|h; = 1} = x;8; + E{ey;|h; = 1)
=x;8, + Efey;ley; > —x3;8,}

/ 012 ’
=x1;81 + —5 E{eyley > —x3;85}
)
¢ (x5, 8,)

:xiiﬂl +012<I>(x’ [ )
2i P2

(7.84)

the inverse Mill's ratio: Heckman'’s lambda

Although the tobit II model can be motivated in different ways, we shall more or less
follow Gronau (1974) in his reasoning. Assume that the utility maximization problem
of the individual (in Gronau’s case: housewives) can be characterized by a reserva-
tion wage w/ (the value of time). An individual will work if the actual wage she is
offered exceeds this reservation wage. The reservation wage of course depends upon
personal characteristics, via the utility function and the budget constraint, so that we
write (assume)
Wir = Zzl' 14 + N>

where z; is a vector of characteristics and 7; is unobserved. Usually the reservation
wage is not observed.

Now assume that the wage a person is offered depends on her personal characteristics
(and some job characteristics) as in (7.80), i.e.

* _ S
wi = x;8, + &y

If this wage is below w; individual i is assumed not to work. We can thus write her
labour supply decision as
hy=1 ifw'—w >0

=0 ifw'—w <0

hi =w —w =x;B, —zjy + (e1; = m;) = X382 + &3, (7.85)



v =xpB + &y (7.86)

hi =B, + & (7.87)
yi=yih, =1 ifhf>0 (7.88)
y; not observed, h; =0 if h] <0, (7.89)
where s
(2) ~ NID ((8) , (;’112 "112)) : (7.90)
Estimation:
log Ly(B. 07, 015) = Y _log P{h; =0}

icly

+ ) log £ (yilh; = 1) +log P{h; = 1}]. (7.91)
iel

Heckman'’s two-step estimation

Vi = XBy o+, (7.97)
where ,
3 = ¢(x2,',32).
LDy By)

« Step 1: Estimate the selection equation(7.87) using Probit model. Obtain the
estimate 8, and compute the Inverse Mills Ratio.

« Step 2: Run OLS on the outcome equation(7.97) using only the selected sample
(h; = 1). Obtain estimates 4, and A.

In Heckman two-step estimation, since the error from the first step carries over to the
second step, its efficiency is lower than the overall estimation of MLE. The advantage
of the two-step methad lies in its simplicity of operation and weaker assumptions

about the distribution. Moreover we can get the probability P(h; = 1) in the first stage.

lllustration: Expenditures on Alcohol and Tobacco (Part 2)

Table 7.8 Models for budget shares alcohol and tobacco, estimated by OLS using positive
observations only

Alcoholic beverages Tobacco

Variable Estimate s.e. Estimate s.e.

constant 0.0527 (0.0439) 0.4897 (0.0741)
age class 0.0078 (0.0110) —0.0315 (0.0206)
nadults —0.0131 (0.0163) —0.0130 (0.0324)
nkids > 2 —0.0020 (0.0006) 0.0013 (0.0011)
nkids < 2 —0.0024 (0.0023) —0.0034 (0.0045)
log(x) —0.0023 (0.0032) —0.0336 (0.0055)
age x log(x) —0.0004 (0.0008) 0.0022 (0.0015)
nadults x log(x) 0.0008 (0.0012) 0.0011 (0.0023)

R? = 0.051 s =0.0215 R? =0.154 s =0.0291

N = 2258 N = 1036




Table 7.9 Probit models for abstention of alcohol and tobacco
Alcoholic beverages Tobacco

Variable Estimate S.€. Estimate S.e.
constant —15.882 (2.574) 8.244 (2.211)
age 0.6679 (0.6520) —2.4830 (0.5596)
nadults 2.2554 (1.0250) 0.4852 (0.8717)
nkids > 2 —0.0770 (0.0372) 0.0813 (0.0308)
nkids < 2 —0.1857 (0.1408) —0.2117 (0.1230)
log(x) 1.2355 (0.1913) —0.6321 (0.1632)
age x log(x) —0.0448 (0.0485) 0.1747 (0.0413)
nadults x log(x) —(0.1688 (0.0743) —0.0253 (0.0629)
blue collar —0.0612 (0.0978) 0.20064 (0.0834)
white collar 0.0506 (0.0847) 0.0215 (0.0694)
Loglikelihood —1159.865 —1754.886
Wald test (xg) 173.18 (p = 0.000) 108.91 (p = 0.000)

For alcoholic beverages, total expenditure, the number of adults in the household as
well as the number of children older than 2 are statistically significant in explaining
abstention.

For tobacco, total expenditure, number of children older than 2, age and being a blue-
collar worker are statistically important explanators for abstention.

Table 7.10 Two-step estimation of Engel curves for alcohol and tobacco
(tobit II model)

Alcoholic beverages Tobacco
Variable Estimate 5.€. Estimate s.€.
constant 0.0543 (0.0487) 0.4516 (0.0735)
age class 0.0077 (0.0110) —0.0173 (0.0206)
nadults —0.0133 (0.0166) —0.0174 (0.0318)
nkids > 2 —0.0020 (0.0006) 0.0008 (0.0010)
nkids < 2 —0.0024 (0.0023) —0.0021 (0.0045)
log(x) —0.0024 (0.0035) —0.0301 (0.0055)
age x log(x) —0.0004 (0.0008) 0.0012 (0.0015)
nadults x log(x) 0.0008 (0.0012) —0.0041 (0.0023)
A —0.0002 (0.0028) —0.0090 (0.0026)
0, 0.0215 n.c. 0.0291 n.c.
Implied p —0.01 n.c. —0.31 n.c.
N = 2258 N = 1036

For alcoholic beverages the inclusion of A does not affect the results very much and



we obtain estimates that are pretty close to those reported in Table 7.8. The t-statistic
on the coefficient for A does not allow us to reject the null hypothesis of no correlation,
while the estimation results imply an estimated correlation coefficient of only -0.01.

PZT

For tobacco, on the other hand, we do find a significant impact of the sample selection
term A, with an implied estimated correlation coefficient of -0.31.



Panel GMM
yie = zpB4+uw, i=1,...,n,t=1,...,T

z; contains endogenous variables and lagged dependent variables.

population moment:

E[Z[u;] =0
sample moment:
1,
gn(ﬂ) = z Z Zi (yz Xzﬂ)

GMM estimator:
BPGMM(W) = (83 WSa2) 1S Ws.y
asymptotic normality of Bpay:
vn (BPGMM - ﬁ) % N(0, Avar(Bpean)
Avar(Branm) = (S5, WEs.) B, WSWS,, (S, WE,,)
Avar(Braam) = (S0, WSez) 'S, WSW S, (S, W Saz) !

Panel-robust standard errors allowing for both heteroskedasticity and auto-
correlation.

Set W = S_!, One-Step GMM or panel-2SLS estimator:

A

Basis = [X'2(2'2) ' 2'X| ' X' 2(2'2) " 2'y = (X' X)Xy
Avar(Basts) = 82(X'X)7Y, &2 = a2
Setw =8-1, §— S, Two-step GMM estimator (efficient):
~ ~ -1 ~
Prscana = [X'257'2'X| X'287'2"y
—_— A A -1
Avar(Bascum) = [X’ZS’ Z’X]
Tests of Over-identifying Restrictions (OIR, Hansen's J):

. A N d
OIR = J = n- g(Bascam)' S 9(Bascnm) — x*(L — K)



IV Selection

Exogeneity Assumption Moment Condition Instrument Vector
Summation E[>, ziiui| =0 it ]

) _ ’ 7 ! ! 1
Contemporaneous Elz;u;;] =0, all ¢ [(l:,J . -O?_I z,-rI 0;;+5 ces ﬂrr]!
Weak Elzisu;; ] =0,5s <t allt [0:l = -O;,r_J (Z’}), OJ:?+l ---OIT]
Strong Elz;su;;] =0, all s and ¢ [0;, -0, (z;) 0n+| 0]
 The instrument vector is the fthrow of Z; in (22.11): (z},) = [z}l...z;fl.(z,?:}’ =[z}y...Z:y]:and ry = dim|z; ]

or dim|z; ]| ordimlz;‘ri |-

Summation Assumption

Z; Us1
!
Z;y Ui2
Zi - ) u; = .
!
Z;r uir

E

T
E ziuis| = 0
=1

The sum of the expectations between the instruments and the error terms over the
entire sample period is zero.

Contemporaneous Exogeneity Assumption(Stronger)

-, -
z; O 0 i
0 z, --- Ui2
Z;, = N
0
e ! uiT
| O 0 z,]

E[zituit] =0, t= 1,-'-,T

The instrument in each period is uncorrelated with the error term in the same period.
If z includes time dummies then there are only TK — (T — 1) moment conditions
available.

« How to construct IV: For period t, we use only the current-period instrument and
set instruments from other periods to zero.
Weak Exogeneity Assumption

Elzjsuy] =0, s<t

The current and lagged values of the instrument are uncorrelated with the current
error term.



« How to construct IV: For period t, we use all instruments up to and including
period t.

Strong Exogeneity Assumption
E[zisuit] :0, S,tzl,...,T

All values of the instrument (past, present, and future) are uncorrelated with the error
term in any period.

« How to construct IV: For any period t, we can use instruments from all T periods.

Redundant Instruments

Time-invariant instruments can be used only once.
Instruments that are the product of time dummies and a time-invariant regressor
should be included only once.

Chamberlain’s Optimal Distance Estimator
Yit = o + x;tﬂ + w4t
Assume E[z;su;] = 0, for all s, ¢t.
To eliminate «;, we typically apply within transformation or first-differencing,

obtaining a transformed model (g = Z.,8 + w@it).

However, this transformation loses information, and if z;; is strongly
exogenous, then pre-transformation values of z;s(s # t) from other periods can
also serve as valid instruments.

Chamberlain's method aims to more fully utilize these cross-period moment
conditions, thereby obtaining a more efficient estimator than the standard
fixed effects estimator.

Chamberlain's model setting:

yi = ea; + (I7 ® B)zi + u;

Chamberlain assumes the fixed effect a; can be linearly predicted by the explanatory
variables z; (values from all periods):

T
E*ag|z;] = p+ Z Aty = p+ N,
t—1

Assume E*[u;|a;, z;] =0



Step 1: Estimate the Reduced-Form Parameters

E*yi|zi] = eE*ai|zi] + (It ® 5,)2131
=eu+ (It @B +eXN)z;
=1l + 1Lz,

- run a multivariate OLS regression to get the reduced-form parameter II.

- estimate the variance-covariance matrix of II: V[Vec(II)] (Vec for Vectorization).

Step 2: Minimum Distance Estimation

78,3 = (Vee(l ~ Ir @ ' — X)) W (Vec(lT ~ Ir @ ' — X))

no homoskedasticity assumption is needed.

Example

Table 21.2. Hours and Wages: Standard Linear Panel Model Estimators®

POLS Between Within First Diff RE-GLS RE-MLE
o 7.442 7.483 7.220 .001 7.346 7.346
6] 083 067 168 109 119 120
Robust se” (.030) (.024) (.085) (.084) (.051) (.052)
Boot se [.030] [.019] [.084] [.083] [.056] [.058]
Default se {.009} {.020} {.019} {.021} {.014} {.014}
R? 015 021 016 008 014 014
RMSE 283 177 233 296 233 233
RSS 427.225 0.363  259.398 417.944 288.860 288.612
TSS 433.831 17.015 263.677 420.223 293.023 292.773
Oy .000 181 161 162
o, 283 232 233 233
A 0.000 - 1.000 - .585 586
N 5320 532 5320 4788 5320 5320

“ Shown are pooled OLS (POLS), between, within, first-differences, random effects (RE) GLS and MLE linear
panel regression of Inhrs on Inwg. Standard errors for the slope coefficients are panel robust in parentheses,
panel bootstrap in square brackets, and default estimates that assume iid errors in curly braces. The R?, root
mean square error (RMSE), residual sum of squares (RSS), total sum of squares (TSS), and sample size come

from the appropriate regression given in Section 21.2. The parameter A is defined after (21.11).

b se. standard error.



Base Case Stacked

OLS 2SLS 2SGMM 2SLS 2SGMM
B 0.112 0.209 0.547 0.543 0.330
Panel se (.096) (.374) (.327) (.209) (.110)
Het se [.079] [.423] [ -] [.226] [-]
Default se {.023} {.389} {-} {.169} {-}
RMSE 283 296 307 307 298
Instruments 5 9 9 72 72
OIR Test — — 5.45 — 69.51
dof — — 4 — 67
p-value — — 244 — 393
N 4256 4256 4256 4256 4256

¢ Differenced regression uses annual data from 1981-1988 for 532 men. Reported are £, the coefficient of A
Inwg, and three estimated standard errors: panel robust in parentheses, heteroskedastic robust in square brackets,
and usual default estimates that assume iid errors in curly braces. All regressions additionally include Akids,
Aage, Aagesq, and Adisab as regressors but their coefficient estimates are not reported. The instruments are
Inwg lagged twice and Kids, age, agesq. and disab lagged both once and twice. For the base case there are 9
instruments and for stacked instruments there are 8 x 9= 72 instruments. RMSE is the root mean square error
of the residual. OIR is the over identifying restictions test statistic, dof is the degrees of freedom, and p-value
is the p-value for this test.

Alnhrs,; = f1Alnwg,, + B Akids; + B3Aage;, + SiAagesq,, + B5Adisab;; + Auyy

2SLS with Base-Case Instruments: 9 |V
Inwg; o, kids;y_1,a9€;;_1,a9esq;1,disab;; 1, kids;;_o,ag€;; o,ag9esq;; o, disab;; o

2SLS with Stacked Instruments: 72(=8x9) |V
The two-step GMM estimator is more efficient than 2SLS.

Test of Overidentifying Restrictions: see OIR Test and its p-value
Hy: All overidentifying moment conditions are valid. In other words: all instruments are
exogenous.

Test of Weak Instruments:

Hy: The correlation between the instruments and the endogenous explanatory variable
is weak./The coefficients of the instruments in the first-stage regression are jointly
zero (or close to zero).



Chap1:

1. Assumptions

For Ass 2, distinguish strict and weak exogeneity.
If we assume that x is unstochastic(fixed regressor), then we don't need
the exogeneity assumption.

N

. proposition 1.1, 1.2

don't need to proof but remember the conclusions!

w

. hypothesis test
o T

F(Wald test)

4. GLS

Chap2:

1. convergence in probability and distribution

Lemmas can be used directly.
Assumptions, WLLN, CLT need to be write down.

2. ergodic stationary, weak stationary, martingale difference stationary
3. OLS large sample properties

» consistency

« asymptotic normality

« asymptotic variance estimation

4. hypothesis test

t: t distribution in finite sample, normal distribution in large sample

F: F distribution in finite sample, Chi2 distribution in large sample

l heteroskedasticity is allowed.



Chap3:

1. definitions

conditional and unconditional likelihood function
normal distibution, binominal distibution, logistic distribution
maximum likelihood estimation(only consider the linear model)

N

. Cramer-Rao bound

find the least variance's estimator in unbiased estimators.
B can attain the bound, 42 can't.

w

. hypothesis test
linear:
o Wald:
= W1: ~ 2, if we know ¢?

= W2: — %2, we use s? to subsitude the unknown ¢?
= W3=W2/h: ~ F, since we use the unbiased s?> = SSR/(n — K)
o LR: connection with F test
nonlinear:

o W — x?
o F=W/h—F
o WZ:\/W%N

Chap4:

1. edogeneity from
« omitted variables
e« measurement error

« simultaneous equations
l lead to unbiasedness and inconsistency

2.1V
1. assumptions: correlation, exogeneity
2. estimation, relations to OLS and GMM
3. order condition and rank condition
4. assumptions for large sample(don't need to proof)



5. 2SLS: when just indentified, 2SLS becomes IV.

Chap5:

. moment/orthogonality condition: population moment, sample moment
. GMM objective function
. sample error

A W0 N -

. proposition 3.1, 3.2

« consistency

« asymptotic normality

« asymptotic variance estimation

5. efficient GMM: least variance(W = § 1)
6. hypothesis test(proposition 3.6, 3.7, 3.3)

J test(over identifying restriction test) = GMM objective function
H,?df =K-L

7. homoskedasticity
« GMM to 2SLS
J to Sargan

l asymptotic variance

Chap6:

1. Assumptions: versus SEGMM
2. MEGMM objective function, estimator §

when use zipped matrix write down the dimensions.

3. special cases: FIVE, 3SLS, SUR

« Assumptions

« large sample properties(don't need to proof)
« relations

4. SUR versus OLS(Figure 4.1)



Chap9&10:

1. binary choice model
« logit
« probit

l definition, likelihood function, goodness of fit

2. multiple choice model
« orded(extended probit with mutiple hurdles)

« non-orded(extended logit, Gumble ditribution)
lIA(odds ratio): idependence between two probabilities

3. count data: possion(estimate by MLE), equidispersion(NegBin | & II)
4. Tobit1
« cencered(3 equations, y=0 exists)

l logL1= part1 +part2

» truncated(2 equtions)
5. Tobit2: 5 parts, sample selection bias=inverse Mill's ratio
6. Heckman 2-step estimation versus MLE

Chap11:

1. GMM conclusions: Bpaar, VI[Braau]
2. 1V selection(4 exogeneity assumptions)
3. Chamberlain's optimal distance estimator



